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Executive Summary 

This report is in fulfilment of requirements for Deliverable D2.3 of OPTIMAI. The document 

reports the State-of-the-Art in related scientific fields and identifies relevant research initiatives. 
Information contained herein is the result of activities performed in Task 2.2 (State of the art 

analysis, existing and past research initiatives). 

The key activities performed in this task are summarized in the following list: 

- Short introduction to Industry 4.0 to support the relevance and necessity of artificial 
intelligence in modern industry. 

- Assessment of the state-of-the-art within existing results coming from related projects, 
to identify which ones are relevant to OPTIMAI. This assessment was performed in terms 

of functionality provided, innovation capacity, technology, license, status, etc.  

- Assessment of the state-of-the-art within relevant scientific domains, including Artificial 

Intelligence (AI) for Industry, Metrology, AI-enhanced Digital Twins, Internet of Things (IoT) 

sensors, Computer Vision and Augmented Reality. 

- For the sake of completeness, a survey on ethical aspects is also performed. This is kept 

short since it is subject to other Deliverables of OPTIMAI. 

The review methodology is described in detail, in terms of sources, search keys, criteria for 

selection/exclusion etc., so that this work is repeatable. 269 articles were finally considered for 

inclusion in this report. 

Upon review of all relevant works, findings are summarized and discussed. The use of artificial 

intelligence technologies in various industrial fields is explored and investigated; enlightening 

graphs are produced to visualize the distribution and popularity of each AI-tech, implying its 
suitability for different purposes. 
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1 Introduction 

This report is in fulfilment of requirements for Deliverable D2.3 of OPTIMAI. The document 

reports the State-of-the-Art in related scientific fields and identifies relevant research initiatives. 
Information contained herein is the result of activities performed in Task 2.2 (State of the art 

analysis, existing and past research initiatives). 

The key activities performed in this task are summarized in the following list: 

- Assessment of the state-of-the-art within existing results coming from related projects, 
to identify which ones are relevant to OPTIMAI. This assessment was performed in terms 

of functionality provided, innovation capacity, technology, license, status, etc.  

- Assessment of the state-of-the-art within relevant scientific domains, including Artificial 
Intelligence (AI) for Industry, Metrology, AI-enhanced Digital Twins, Internet of Things (IoT) 

sensors, Computer Vision and Augmented Reality. 

1.1 Background 

Information and communication technology has been developed rapidly in the last decades. 
Cloud computing, internet of things, big data analytics, artificial intelligence, etc. represent some 

examples that can change industry and induce intelligence. Smart industry should be able to 

face the growing challenges of the market, by achieving a better reduced production time, less 
waste, and increased quality in products and services. 

To this cause, a huge number of smart sensors is required along the production line, including 
temperature sensors, flowmeters, pressure sensors, humidity sensors, vibration sensors, etc., 

which give real-time information about the status of production. The benefits of real-time 

monitoring are rather obvious; smart technologies enable real-time data collection from 

production sensors and implementation of faster and more accurate decision making. On the 
other hand, such an approach requires the computational capacity to collect, transfer and 

process vast amounts of data. 

To alleviate such issues, Industry 4.0. employs AI technologies, mainly in the regime of machine 

learning. Although Industry 4.0 is expected to have a strong impact on all areas of 

manufacturing, two major sectors are of most relevance to OPTIMAI, namely Machine Tools and 

Maintenance. 

1.1.1 Machine tools 

There have been four major generations [1] of machine tools (Figure 1), timed even before the 

first industrial revolution: 

- Machine tools 1.0. Mechanical tools driven by huge mechanical devices but manually 
operated. These are dated long before the start of the Industrial Revolution.  
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- Machine tools 2.0. The invention electronic devices in mid-20th century enabled 
numerical control and electronic drive of machinery. 

- Machine tools 3.0. The computer era enabled industrial automation.  

- Machine tools 4.0. The current generation of machine tools introduces the concept of 
Cyber-Physical Machine Tools (CPMT). These try to integrate advanced smart industrial 
tools towards improved flexibility, reliability, safety, and production efficiency. 

 

Figure 1. Evolution of mechanical tools. 

CPMTs within Machine Tools 4.0 consist of three main parts:  

- Physical equipment. Hardware and manufacturing apparatus; the actual heavy-duty 
machinery. 

- Smart devices. Devices with embedded intelligence, usually in the form of machine 
learning and its variations. 

- Connectivity components. Special devices that interconnect physical equipment to 
smart devices. These are not necessarily located in the same region; instead, they may 
communicate via a wide-spread network and use cloud/fog services. 

CPMTs contain built-in computing devices that record and control industrial processes, with 

feedback loops supporting two-way real-time communication. Data is captured using various 

Data Acquisition Systems (DAQs), including sensors and cameras. Data control systems transmit 
data in real time. Special computational systems process this data and create a digital 

representation of the machine tool. This process raises the concept of Machine Tool Cyber Twin 

(MTCT). The MTCTs is not a simple virtual representation of the physical equipment, albeit it has 

built-in computing and decision-making components that monitor and control the physical 
devices and production processes. All data involved in the process may be submitted to central 

cloud systems for further analysis as historical data. 

1.1.2 Maintenance 

Maintenance plays a key role in reducing the risk and minimizing the effects of unexpected 
downtimes. Maintenance has evolved (Figure 2) from simple reaction to incidents (M 1.0) to a 

prescriptive (self-scheduled) process. 
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• Maintenance 1.0. In the era of Machine Tools 1.0, machines were simple and easy to 
repair. Machine operators were responsible for the maintenance of the equipment and 
their maintenance actions were limited focusing on errors that had already occurred.  

• Maintenance 2.0. The second generation of maintenance introduced the idea to create 
a system of scheduled preventive repairs. The maintenance of machinery and equipment 
was carried out at predetermined intervals, while spare parts were available in advance. 

• Maintenance 3.0. The third generation of maintenance integrates sensors to monitor 
the condition of the production lines. Unexpected incidents are timely identified and 
resolved. 

• Maintenance 4.0. Not only does the fourth generation of maintenance target to 
diagnose incidents and trigger corrective actions, but also to predict errors in advance, 
using historical data along with experience from past events. 

 

Figure 2. Evolution of maintenance. 

M4.0 is also known as Smart Maintenance as it brings the concept of self-education by means of 
learning from collected data to predict imminent incidents. To enable M4.0, some critical 

technologies are required to elaborate, such as Internet of Things (IoT) and Industrial Internet of 

Things (IIoT), cloud computing, predictive analysis in its many flavors (fuzzy logic, neural 
networks, evolutionary algorithms etc.), targeting data collection, transmission, processing and 

— ultimately — decision making. 

1.1.3 Relevance and scope of OPTIMAI 

The study of every single aspect within Industry 4.0 goes far beyond the scope of OPTIMAI, which 

is to optimize manufacturing processes through artificial intelligence and virtualization. In 
practical terms, OPTIMAI is mostly concerned about Zero-Defect Manufacturing (ZDM); this 

means that integration of OPTIMAI in production lines envisions producing products of high 

quality with minimal rework and waste. Obviously, this is not straight-forward to achieve as it 

relies on numerous underlying components within production: machinery fault detection, 
resolution (prevention, detection, repair), management of product quality (metrology, 

classification), etc. 
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The production process is expected to benefit from OPTIMAI through its virtualization and 

simulation modules for production planning that will eliminate the need to allocate machine 
time for validation and preproduction runs that consume production resources and usually have 

low yield rates. Avoiding such test production runs will accelerate the completion of production 

orders and reduce its cost by minimizing scrap and optimizing production configuration. In 

addition, OPTIMAI will provide tools for the dynamic (re)-configuration and adjustment of 
production equipment, by directly exploiting quality control feedback to adjust machine 

parameters and realizing a context aware Augmented Reality (AR) environment, where human 

operators can rapidly reach informed production decisions regarding the calibration of 
machines in order to improve productivity and avoid deficiencies.  

1.2 Objectives 

The objective of this state-of-the-art analysis is to explore existing practices and success stories 

within the framework of Smart Factory and Factory of the Future (FoF), in order to establish the 
guidelines for further development within OPTIMAI. With this concept in mind, the following 

objectives have been determined: 

- Make a survey on past research projects. Report key-findings, innovations, and 
limitations. 

- Use peer-reviewed academic papers and articles to review best latest progress and State-

of-the-Art practices within relevant scientific domains, including Artificial Intelligence for 

Industry, Metrology, AI-enhanced Digital Twins, IoT sensors, Computer Vision, 

Augmented Reality and Zero-defect manufacturing. 

- Implement a systematic literature critique to analyze and filter results of the conducted 
literature review. 

Additionally, this survey goes beyond technicalities, and performs an: 

- Assessment for AI Ethics in Industry.   
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2 Methodology 

2.1 Systematic Literature Review 

Global access to journal repositories, conference proceedings and technical reports, yields a 

practically endless pool of information. Thus, a systematic literature review was conducted to 
identify the best available resources and synthesize the current state of the art using evidence-

based reports. 

Following a systematic literature review method, reviews and meta-analyses can be 
accomplished with a degree of accuracy that can lead research in a well-structured manner. In a 

systematic review method, the least collection of elements is based upon evidence and meta-

analyses that summarize and analyze scientific reliable literature by utilizing a structured 
method based on predetermined criteria/queries that can be used by various researchers. 

Different findings and ideas which are published in conventional papers by different researchers 

can be investigated with a correct and comprehensive analysis in a systematic review method.  

2.2 Literature Planning Protocol 

For the implementation of an efficient literature survey, a protocol was established based on 

ideas of Kitchenham [2]; this approach has been employed by other review surveys (e.g. 

Carvalho et al. [3]) with extraordinary results. The literature survey needs to consider the 

following tasks: 

• Define scientific/research questions to be answered by the survey. 

• Define a list of eligible sources for searching. 

• Define inclusion and exclusion criteria. 

• Assessment of eligible papers. 

These tasks are explained in more details as follows. 

• Research questions 

The literature survey should trigger responses to the following questions: 

o What AI/ML technologies are employed in existing smart factory 
applications/research within Industry 4.0? 

o What is the extent of involvement for each AI/ML technology in various smart factory 
fields? 

o What are the data used to apply AI/ML technologies in smart manufacturing? 

• Literature sources 
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Only well-known database sources and respected publishers were considered; predatory 

journals/conferences and other sources of questionable quality were neglected. Thus, a 
literature review was carried out in the following databases: 

o EFFRA [4]. The European Factories of the Future Research Association (EFFRA) is a non-

profit, industry-driven association promoting the development of new and innovative 
production technologies. It is the official representative of the private side in the 

'Factories of the Future' public-private partnership. More than 300 projects have been 

reported to date. 

o Crossref [5]. Crossref is a not-for-profit membership organization that makes 

research outputs easy to find, cite, link, assess, and reuse.  

o Google Scholar [6]. Google Scholar is a platform for broad searching of scholarly 

literature. It can search across many disciplines and sources: articles, theses, books, 

abstracts, and court opinions from academic publishers, professional societies, online 
repositories, universities and other web sites. 

o Microsoft Academic [7]. Microsoft Academic is a platform to assist scientific research 
via Knowledge acquisition and reasoning, Semantic search and recommendation, 

Importance assessment and ranking, etc.  

o Scopus [8]. Scopus is a well-known database for abstracts and citations. UTH has 
access to institutional subscription (via HEAL-Link [9]), thus its full search potential has 

been adequately exploited. 

• Inclusion criteria 

To select the best papers, the following criteria were assessed, inspired by [10]: 

o Is the article related to industrial/manufacturing issues? 

o Does the title reflect the contents? 

o Does the abstract summarize the key components? 

o Is the literature review proper and up to date? 

o Is the aim of research clearly stated? 

o Is the methodology identified and justified? 

o Is the method of data collection valid and reliable? 

o Is the method of data analysis valid and reliable? 

o Are results presented in a clear way? 

o Are results generalizable and/or transferable? 

• Exclusion criteria 



 

26 

The included articles were further processed by applying the following exclusion criteria: 

o Works not related to AI/ML. 

o Works dated before 2015. 

o Websites and online material. 

o Student theses. 

o Brief reports. 

o Papers describing frameworks, platforms, software, libraries etc. 

Following the above selection protocol, a total of 165 research articles were initially found as 
suitable to be assessed within the literature review. These were listed by categories as previously 

defined and include Artificial Intelligence for Industry, Metrology, AI-enhanced Digital Twins, IoT 

sensors, Computer Vision and Augmented Reality, Predictive Maintenance and Zero-defect 

Manufacturing. 

It should be mentioned that the most popular on-line publishers such as IEEE Xplore, Elsevier, 

Springer, MDPI, IOP which offer open-access journal mining, along with scientific and technical 
search engine ScienceDirect helped considerably in this direction.  
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3 Literature Review 

3.1 Distribution of articles by database 

A thorough review was performed in the aforementioned databases; the search for relevant 

literature was accomplished by utilizing the keywords including “artificial intelligence”, “machine 
learning”, “deep neural networks”, “metrology”, “digital twins”, “(industrial) internet of things”, etc. 

Table 1 contains indicative phrases employed as primary keywords during the search process 

for relevant contents. 

Table 1. Search strategy in different databases. 

Database Search Strategy 

IEEE  

Springer 

Elsevier 

Taylor and Francis 

MDPI 

ASME 

Others 

(Neural Networks, Deep Learning, Machine Learning, Support Vector 
Machine) AND (Metrology, Digital Twins, Industrial Internet of Things, 
Computer Vision, Augmented Reality, Quality Control, Predictive 
Maintenance, Zero-defect Manufacturing) 
 
“AI methods” in Abstract AND “Smart Factory” in Abstract. 
 
“AI methods” AND “Smart Factory” in Abstract.  etc. 

 

The search process described above returned 165 articles and all of them were reviewed. To be 

more explicit, the term ‘article’ was employed in a broader sense, including scientific papers, 

conferences proceedings, books, product demos and websites, platforms, AI frameworks, etc.  

However, only 122 articles in form of scientific papers, book chapters, books and conference 

proceedings were considered for the purposes of the state-of-the-art analysis conducted for this 

deliverable.  

The distribution by source (IEEE, Elsevier, Springer, etc.) of the considered 122 reviewed articles 

is shown in Table 2.  

Table 2. Distribution of identified articles per publisher. 

Publisher Journal 

Papers 

Conference 

Proceedings 

Books and 

chapters 

Total 

Articles 

IEEE  10 20   30 

Springer 13 4 3 20 

Elsevier 32 3 1 38 

Taylor and Francis 3     3 

MDPI 5     5 

ASME 2 2   4 

Others 6 14 2 22 
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Total 71 43 6 122 

 

3.2 Study selection and eligible papers 

The outcome of 122 research articles was taken into consideration based on selection criteria. 

As per exclusion criteria, only qualified articles, book chapters and summary reports were 

chosen. Journal editorials, newsletters and papers which were not in English were excluded. 

Thesis reports, brief reports and websites were excluded too. According to inclusion criteria, we 
abided the following considerations: reference of the author, year of publication, whether it 

belongs to a journal or conference proceeding, the definition of the relevant smart 

manufacturing domains including Artificial Intelligence for Industry, Metrology, AI-enhanced 
Digital Twins, IoT sensors, Computer Vision and Augmented Reality, Quality Control, Zero-Defect 

Manufacturing; its types and objectives, such as type of AI methods used, type of machine 

learning methods used, type of deep learning methods used, results and concluding remarks.  

Furthermore, we proceeded by scrutinizing the abstract and summary of the chosen articles to 

investigate whether the selected articles fully satisfy the inclusion criteria. All insignificant and 

unrelated articles were discarded in this stage. Similarly, all academic research papers that did 
not match the inclusion criteria of AI methods were discarded too. In connection with this, 35 

academic papers were excluded from the review process, whereas 130 articles were included as 

suitable according to the criteria discussed above. 

Figure 3 indicates a chart related to classification. After reviewing all the remaining 130 papers, 

a second stage of articles extraction followed, in which papers describing IoT platforms, AI-based 

frameworks and open-source software libraries (keras, TinyML etc.) were excluded.  
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Figure 3. Flowchart for the implementation of the Literature Planning Protocol. 

Finally, 122 academic research papers from 30 international scientific journals (among them are: 
J. of Manufacturing Systems, J. of Intelligent Manufacturing, Computers and Industrial 
Engineering, IEEE Trans in Industrial Informatics, Computers in Industry, Int. Journal of 
Production Research, IEEE Transactions on Instrumentation and Measurement, Simulation 
Modelling Practice and Theory) as well as 10 conferences proceedings (indicative Conferences: 
International Conference on Emerging Technologies and Factory Automation, International 
Workshop of Advanced Manufacturing and Automation, IOP Conference Series: Materials 
Science and Engineering, International Conference on Mechanical and Aerospace Engineering 
(ICMAE), IEEE Workshop on Applications of Computer Vision) which were published from January 
2015 to April 2021, satisfied the eligibility criteria and were chosen for in-depth analysis and 

Classification based on AI-techniques 

(ANN, ML, DL) in smart manufacturing

Found N=165 total records 

(Science Direct, GoogleScholar, IEEExplore, etc)

Excluded websites (-5) 

N=160 records remaining

Excluded theses, brief reports etc. (-8)

N=152 records remaining

Excluded papers not describing AI 

techniques in smart manufacturing (-19)

N=130 records remaining

Excluded frameworks, platforms, 

software libraries etc. (-11)
N=122 records remaining
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study. We thoroughly reviewed all selected articles and finally retained those which applied AI 
methods such as ANN, machine learning, deep learning, SVMs, Bayesian, linear regression etc. 
for smart manufacturing. 
The following chart depicted in Figure 4, graphically represents the classification of articles by 

each relevant smart manufacturing domain, (AI for Industry, Metrology, AI-enhanced Digital 

Twins, IoT sensors, Computer Vision and Augmented Reality, Quality Control, Zero-Defect 

Manufacturing), accompanied by the corresponding percentage.   

 

Figure 4. Classification of articles by each relevant smart manufacturing domain. 

Regarding the ethics in AI for industry, a number of 46 articles was also reviewed focusing mainly 
on ethics guidelines and principles to form an ethical framework in the development and 

deployment of Artificial Intelligence technologies in smart manufacturing. The reviewed 

literature brings in certain ethical concerns, discussion and technological challenges that arise 
with AI systems, and deal mostly with the issues of privacy, safety, manipulation, transparency, 

fairness and accountability. Overall, AI technology adopted by Industry 4.0, can be implemented 

ethically and cautiously through the implementation of a set of rules leveraged to achieve the 

desired outcomes.   

3.3 Distribution of projects in the EFFRA database 

An assessment of state of the art and existing results deriving from related projects was 

accomplished, to properly identify which of these projects have competent relevance to 

OPTIMAI. For the purposes of this deliverable, 14 FoF-11 projects relevant to OPTIMAI (Calls: FoF-
11-2016 Digital Automation - Novel architectures for factory automation based on CPS and IoT - 

Collaborative manufacturing and logistics, and FoF-11-2020: Quality control in smart 

manufacturing) as well as, other 14 EU-funded projects relevant to digitization in industry, quality 
control, ZDM, digital twins, computer vision and ZDM, have been extracted from the EFFRA 

database. The following Tables list the name of each project accompanied by its full title and the 
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respective webpage (FoF-11 and EFFRA projects). After a careful examination of the related 

projects, it was decided that the projects in EFFRA are classified into three main categories 
according to the OPTIMAI objectives, namely Zero-defect manufacturing, AI-enhanced digital 

twins, and Computer vision and augmented reality. Furthermore, one more category for security 

information was considered. In what follows, each one of the selected EU-funded projects which 

are highly related to the main pillars of OPTIMAI, are presented. 

Table 3. FoF-11 projects. 

No. Name Title 

1 

 

https://www.i4q-project.eu/  

i4Q: Industrial Data Services for Quality Control in 
Smart Manufacturing 
 

DT-FOF-11-2020, 2021-2023 

2  
 
 

https://dat4zero.eu/  

DAT4.ZERO: Data Reliability and Digitally-enhanced 
Quality Management for Zero Defect Manufacturing 
in Smart Factories and Ecosystems 
 

DT-FOF-11-2020, 2020-2024 
3 

 
https://interq-project.eu/  

InterQ: Interlinked Process, Product and Data 
Quality framework for Zero-Defects Manufacturing 
 

DT-FOF-11-2020, 2020-2023 
4 

 
http://www.autoware-eu.org/ 

AUTOWARE: Wireless Autonomous, Reliable and 
Resilient ProductIon Operation ARchitecture for 
Cognitive Manufacturing 
 

FoF-11-2016, 2016-2019 
5 

 

http://www.composition-project.eu/  

COMPOSITION: Ecosystem for Collaborative 
Manufacturing Processes _ Intra- and Interfactory 
Integration and Automation 
 

FoF-11-2016, 2016-2019 

6 

  
 
https://www.connectedfactories.eu/ 

ConnectedFactories:  

Industrial scenarios for connected factories 
 

FoF-11-2016, 2016-2019 

4 

 

http://daedalus.iec61499.eu 

Daedalus: Distributed control and simulAtion 

platform to support an Ecosystem of DigitAL 

aUtomation developerS 

FoF-11-2016, 2016-2019 
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5 

 

http://www.digicor-project.eu  

DIGICOR: Decentralised Agile Coordination Across 
Supply Chains 
 

FoF-11-2016, 2016-2019 

6 

 

http://www.disrupt-project.eu  

DISRUPT: Decentralised architectures for optimized 
operations via virtualised processes and 
manufacturing ecosystem collaboration 
 

FoF-11-2016, 2016-2019 
7 

 
http://www.faredge.eu  

FAR-EDGE: Factory Automation Edge Computing 
Operating System Reference Implementation 
 

FoF-11-2016, 2016-2019 

8 

 
 

https://www.nimble-project.org/  

NIMBLE: Collaboration Network for Industry, 
Manufacturing, Business and Logistics in Europe 
 

FoF-11-2016, 2016-2019 

9 

 
http://www.safire-factories.org 

SAFIRE: Cloud-based Situational Analysis for 
Factories providing Real-time Reconfiguration 
Services. 
 

FoF-11-2016, 2016-2019 

10 

 
 

http://vf-os.eu 

VFOS : Virtual Factory Open Operating System 
 
 

FoF-11-2016, 2016-2019 

11 

 
http://www.scalable40.eu 

SCALABLE4.0: Scalable automation for flexible 
production systems 
 

FoF-11-2016, 2017-2020 
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Table 4. EFFRA – Zero-defect manufacturing Projects. 

No. Name Title 

1 

 

https://qu4lity-project.eu/ 

QU4LITY Autonomous Quality Platform for Cognitive 

Zero-defect Manufacturing 4.0 Processes through Digital 

Continuity in the Connected Factory of the Future 

H2020-ICT-07-2018-2019, 2019-2022 
2 

 

https://www.forzdmproject.eu/ 

ForZDM: Integrated Zero-Defect Manufacturing Solution 

for High Value Adding Multi-Stage Manufacturing systems 

FoF.2016.03, 2016-2020 

3 

 

https://www.stream-0d.com/ 

STREAM-0D: Simulation in Real Time for Manufacturing 

with Zero Defects 

 

FoF.2016.03, 2016-2020 

4 

 

https://www.z-fact0r.eu/ 

Z-Fact0r: Zero-defect manufacturing strategies towards 
on-line production management for European factories 

 

FoF.2016.03, 2016-2020 

5 

 

http://go0dman-project.eu/ 

GO0DMAN: Agent Oriented Zero Defect Multi-Stage 
Manufacturing 

 

FoF.2016.03, 2016-2019 

6 

 

http://www.ifacom.org 

IFaCOM: Intelligent Fault Correction and self-Optimizing 
Manufacturing systems. 

 

FoF.NMP.2011-5, 2011-2015 

7 

 
https://www.zdmp.eu/  

ZDMP: Zero Defect Manufacturing Platform 
 

 
2019-2022, Call: DT-ICT-07-2018 

8 

 

https://kyklos40project.eu/ 

KYKLOS 4.0: An Advanced Circular and Agile 

Manufacturing Ecosystem based on rapid reconfigurable 

manufacturing process and individualized consumer 
preferences. 

DT-ICT-07-2019, 2020-2023 
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Table 5. EFFRA – Artificial intelligence enhanced digital twins’ projects. 

No. Project Title 

1 

 

https://www.precom-project.eu/ 

PreCoM: Predictive Cognitive Maintenance Decision 

Support System 

FoF.2017.09, 2017-2020 

2 

 

https://www.fortissimo-

project.eu/about/fortissimo-2 

FORTISSIMO2: Factories of the Future Resources, 
Technology, Infrastructure and Services for 

Simulation and Modelling 

 

FoF.ICT.2015.09.a_Innovation, 2015-2018 

3 

 

https://dataports-project.eu/ 

DATAPORTS: Data Platform for the Connection of 

Cognitive Ports 

ICT-13-2018-2019, 2020-2022 

 

Table 6. EFFRA – Computer vision and augmented reality projects 

No. Project Title 

1 
 

https://serena-

project.eu/ 

SERENA Versatile plug-and-play platform enabling remote 

predictive maintenance 

 

3  

https://factory2fit.eu/ 

Factory2Fit Empowering and Participatory Adaptation of 

Factory Automation to Fit for Workers 

 

5  

https://www.reclaim-

project.eu/ 

RECLAIM Remanufacturing and Refurbishment Large Industrial 

Equipment 

 

 

 

 

 

 



 

35 

Table 7. Other related projects. 

No. Project Title 

1  

http://www.prevision-

h2020.eu/ 

PREVISION: Prediction and Visual Intelligence for Security 

Information 

H2020, 2019-2021 

2 
 

https://konfido-

project.eu/ 

KONFIDO: Secure and Trusted Paradigm for Interoperable 

eHealth Services 

DS-03-2016, 2016-2019 

 

3.4 Results and Findings in European Projects 

3.4.1 FoF-11 projects 

3.4.1.1 i4Q 

The main aim of i4Q [11,12] is to improve digital manufacturing through more reliable and 

effective data. I4Q will provide a complete solution to improve the quality of manufactured 

products aiming at Zero-Defect manufacturing. i4Q aims to provide an IoT-based Reliable 
Industrial Data Services (RIDS), a complete suite consisting of 22 i4Q Solutions. It will manage the 

huge amount of industrial data coming from cheap cost-effective, smart and small size 

interconnected factory devices for supporting manufacturing online monitoring and control. 

The i4Q Framework will guarantee data reliability with functions grouped into five basic 

capabilities around the data cycle: sensing, communication, computing infrastructure, 

storage, and analysis and optimization. i4Q RIDS will include simulation and optimization 

tools for manufacturing line continuous process qualification, quality diagnosis, reconfiguration, 

and certification for ensuring high manufacturing efficiency, leading to an integrated approach 

to zero-defect manufacturing. 

The main results of the project are to provide: the necessary strategies, methods, and key 

technologies to ensure data quality, turn data into information and actionable insights, 
strategies, and methods for process qualification as well as process reconfiguration and 

optimization using existing manufacturing data and smart algorithms. 

3.4.1.1.1 Relevance to OPTIMAI  

i4Q focuses on the reliability data obtained during the manufacturing procedure. OPTIMAI will 

concentrate on the optimization and AI technologies for quality control and ZDM, thus it will 
cooperate with i4Q RIDS by including simulation and optimization tools for manufacturing 

product line continuous process qualification, quality diagnosis, reconfiguration, and 

certification for ensuring high manufacturing efficiency, leading to an integrated approach to 
zero-defect manufacturing. CERTH and ENG are key partners in both i4Q and OPTIMAI, thus, 

they could act as liaison for experience and technology transfer. Furthermore, both in i4Q and 
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OPTIMAI, digital simulation tools of the manufacturing line procedures will be developed in order 

to detect, diagnose and validate the performance of the manufacturing operation. 

3.4.1.2 DAT4.ZERO 

DAT4.ZERO is a Digitally-enhanced Quality Management System (DQM) [13] that gathers and 

organizes data from a Distributed Multi-sensor Network, which, when combined with a DQM 
Toolkit and Modeling and Simulation Layer, and further integrated with existing Cyber-

Physical Systems (CPS), offers adequate levels of data accuracy and precision for effective 

decision-support and problem-solving - utilizing smart, dynamic feedback and feed-forward 

mechanisms to contribute towards the achievement of Zero Defect Manufacturing (ZDM) in 
smart factories and their ecosystems. 

The aim is to: Integrate smart, cost-effective sensors and actuators for process simulation, 
monitoring and control, develop real-time data validation and integrity strategies within actual 

production lines, demonstrate innovative data management strategies as an integrated 

approach to ZDM, develop strategies for rapid line qualification and reconfiguration. 

The primary objectives are summarized as: 

• Develop and demonstrate an innovative DQM system and deployment strategy for 
supporting European manufacturing industry in realizing ZDM in highly dynamic, high-
value, high-mix, low-volume production contexts, by effective selection and integration 
of sensors and actuators for process monitoring and control. 

• Design a DQM platform with an architecture that provides reliable and secure knowledge 
extraction to ensure integrity of data. 

• Provide strategies for advanced real time data analysis and modeling in multiple domains 
and sectors that will increase quality, reduce ramp-up times and decrease time-to-
market. 

The EU-funded DAT4.ZERO project will develop a Digitally-enhanced Quality Management 

(DQM) system to prevent faults. With the use of smart, dynamic feedback and feed-forward 

mechanisms, the project will contribute towards zero-defect manufacturing in smart factories. 
The expected result is to eliminate manufacturing defects in highly dynamic, high-value, high-

mix, low-volume production contexts. By doing this, DAT4.ZERO realize near-zero defect level of 

manufacturing (ZDM) for the European industry. 

3.4.1.2.1 Relevance to OPTIMAI  

OPTIMAI will cooperate with DAT4.ZERO to address the issue of handling large amounts of data, 
which can be used for health state assessment, fault detection and -possibly- fault prevention. 

Ultimately, OPTIMAI will benefit towards the optimization of the quality of manufacturing 

processes and products on its way towards zero-defect manufacturing. No OPTIMAI partners 
participate in DAT4.ZERO, yet open opportunities for future collaboration are possible. 
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3.4.1.3 InterQ 

InterQ project [14,15] proposes a new generation of digital solutions based on intelligent 
systems, hybrid digital twins and AI-driven optimization tools to assure the quality in smart 

factories in a holistic manner, including process, product and data (PPD quality). The broad vision 

of InterQ project will allow controlling the quality of a smart manufacturing environment in an 
end-to-end approach by means of a PPD quality hallmark stored in a distributed ledger. The 

concepts of InterQ will be applied in three high-added value industrial applications. 

The main objective of InterQ project is to measure, predict and control the quality of the 
manufactured products, manufacturing processes and gathered data to assure Zero-Defect-

Manufacturing by means of AI-driven tools powered with meaningful and reliable data. Five 

modules will be developed:  

• The InterQ-TrustedFramework module will implement a trusted framework using 
distributed ledger to exchange quality information. 

• The InterQ-Process module of the project will obtain more meaningful process data for 
quality optimization. This data will be obtained using new sensors close to the tool and 
by AI-driven virtual sensors. 

• The InterQ-Product module will predict the final quality of the processes using digital 
twins fed by experimental data and new digital sensors to measure the product quality. 

• InterQ-Data module will check the reliability of data in two layers: in real time and based 
on historical and statistical analysis of the data streams. 

• InterQ-ZeroDefect module will use the reliable information about the process and 
product quality to improve the production for Zero-Defect-Manufacturing by means of 
AI-driven applications. 

Those 5 InterQ modules will contribute to the creation, extension and usage of the PPD (Product, 

Process, Data) Hallmark to fulfil the specific project objectives. 

3.4.1.3.1 Relevance to OPTIMAI  

Both OPTIMAI and InterQ pave the way towards increased product quality and zero-defect 
manufacturing; and both rely on AI technologies. Since they move in parallel roads, fruitful 

collaborations could be established to exchange fresh ideas on topics of common interest, such 

as AI-enhanced digital twins, AI systems and distributed ledger technologies, quality control etc. 

Both projects target the development of a respective TrustedFramework; thus, joining forces 
would be a beneficial European achievement.  

3.4.1.4 AUTOWARE 

AUTOWARE stands for “Wireless Autonomous, Reliable and Resilient Production Operation 

Architecture for Cognitive Manufacturing”.  

The main goal of AUTOWARE is to help those companies to implement Industry 4.0 by creating 
an open ecosystem that allows SMEs to access new digital technologies and exploit them in their 
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factories. The main idea behind this project is the development of digital automation cognitive 

solutions for manufacturing processes through the implementation of open CPS ecosystem. 

Its main high-level objective is to build an open consolidated ecosystem and single community 

that will lower the barriers of SMEs for cognitive automation application development and 

application of autonomous manufacturing processes. 

Among the innovations delivered are the establishment of an open eco-system which facilitates 

the access to digitalization technologies to SMEs, the development of a business framework that 
migrates services towards digital automation, as well as unifying several European initiatives on 

cognitive autonomous products, production processes and equipment.  

 

Figure 5. AUTOWARE reference architecture for cognitive manufacturing 

AUTOWARE Industry 4.0 solutions are both hardware and software technologies within Robotics 

and Automation, Cyber-Physical Systems, Fog Computing and Internet of Things. 
AUTOWARE deals with service support through the development of cognitive and automation 

apps and collaborative robotics environments, cloud and HPC simulation and computation 

services, and open CPs trusted platforms incorporation, in an attempt to adopt Industry 4.0 

technologies in Small and Medium-sized Enterprises. The integration of such digital technologies 
into manufacturing processes can help SMEs to stay more efficient in an increasingly competitive 

environment. All the technologies, developed within the project, make robots and machines 

work smarter together with people. 

3.4.1.4.1 Relevance to OPTIMAI  

AUTOWARE presents a communication management architecture to satisfy the wide range of 

communication requirements demanded by different industrial applications. In particular, the 

project provides a modular augmented reality platform for smart operator in production 
environment by using smarts glasses and an edge server. OPTIMAI could take advantage of this 

previous work to create AR interfaces for visualization of quality control results and suggestions. 

No OPTIMAI partners were involved in AUTOWARE, therefore, opportunities for future 

collaborations are open.  

3.4.1.5 COMPOSITION 

The COMPOSITION project represents an Ecosystem for collaborative manufacturing 

processes, whose main objective was to develop an integrated information management 



 

39 

system (IIMS) to optimize the internal production processes by exploiting existing data, 

knowledge, and tools to increase productivity and dynamically adapt to changing market 
requirements (Figure 6). The project also developed an ecosystem supporting the interchange 

of data and services between factories and their suppliers, thus facilitating the entry of new 

market actors into the supply chain. 

 

Figure 6. Composition Integrated Information Management System (COMPOSITION IIMS). 

The project targeted to connect data within a factory’s value chain as well as data and services 

between enterprises, overcoming the challenge of integrating the heterogeneity and complexity 

of data and handling confidentiality issues and the lack of standards. 

Regarding the technology employed, a reference architecture was developed around digital 

models of business and production processes and enclosed a set of core multi-disciplinary and 

multi-domain integrated features such as big data analytics, simulation/forecasting, data 

fusion, interoperability, advanced human-machine-interaction, Cyber Physical Systems and 

Internet of Things. More specifically, the management system will consist of: 

• Open connectors for data integration and real-time brokering. 

• Big data analytics for pattern detection implementing a deep learning toolkit. 

• Modelling of simulation tools for decision support. 

3.4.1.5.1 Relevance to OPTIMAI  

OPTIMAI will take advantage of the experience gained by COMPOSITION over the technologies 

deployed regarding big data analytics implementing ML and deep learning algorithms. OPTIMAI 

will also exploit the work regarding big data analytics for pattern detection to establish a 

methodology for detecting defects and predicting potential ones when equipment or materials 
are close to pre-determined margins of error, with the help of AI technologies. Moreover, data 

security, trust and IPR protection will offer great support to OPTIMAI on its way to develop data-

driven techniques for secure sensor data mining and fault detection. To ensure a secure data 
management and exchange in manufacturing, COMPOSITIONS designed a security framework 

which include a blockchain component. This previous work will be considered when creating the 

OPTIMAI’s blockchain-enabled ecosystem.  
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Both in Composition and OPTIMAI projects, simulations tools will be developed to train and 

enhance the efficiency of on-site workers. More specifically, CERTH/ITI developed in 
COMPOSITION various models and simulations comprising manufacturing operations, digital 

factory models and forecasting tools in production operations. These tools could also be 

investigated in the frame of the OPTIMAI project.  

 

 

Figure 7. COMPOSITION technological framework. 

3.4.1.6 ConnectedFactories 

The ConnectedFactories project aimed at establishing a structured overview of available and 

upcoming technological approaches and best practices with regard to the digitalization of 
manufacturing. The project explored pathways to the digital integration and interoperability of 

manufacturing systems and processes. 

Based on three pathways to the digitalization of manufacturing, such as: Autonomous Smart 

Factories, Hyperconnected Factories, and Collaborative Product-Service Factories, the 

ConnectedFactories project focuses on: 

• Creating a common understanding of key enablers and cross-cutting factors for the 

development and deployment of digital technologies and digital platforms for 

manufacturing 
• Deepening pathways by taking into account legacy systems, industrial requirements and 

challenges 

• Situating inspiring research and industrial state-of-the-art cases, key enablers and cross-
cutting factors along these pathways 

• Matching of skills transfer offering with skills demand across Europe 

• Engaging with the research and industrial actors in both European and local fora or 

ecosystems, bringing together manufacturing companies, technology and component 
suppliers, etc. 
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• Creating a broad awareness about the pathways, key enablers and cross-cutting factors, 

and about inspiring cases for SMEs 
• Stimulating visibility and impact of Digital Platform projects (see also 

https://www.connectedfactories.eu/origin-project-outreach-and-impact) 

 

Figure 8. The ConnectedFactories framework. 

The technologies utilized for the implementation of this project included Software and data 

silos, dedicated ERP and MOM, IoT, as well as the FAR-EDGE platform. 

3.4.1.6.1 Relevance to OPTIMAI  

ConnectedFactories mostly targets digitalization of manufacturing and focuses on technologies 

related to data and data communication using IoT etc. OPTIMAI could benefit from these 
technologies to develop its own AI-enhanced IoT and data-related approaches, like block-

chaining, big-data analytics etc. In particular, OPTIMAI will benefit from decentralized 

automation architectures from manufacturers, including Edge/Fog computing, as well as 
Distributed Analytics and Simulation, to further explore and develop AI-based models aiming at 

achieving early defect-detection of the manufacturing components. ConnectedFactories exploits 

the FAR-EDGE platform, whose member was ENG – also member of OPTIMAI.  

OPTIMAI’s pilots could benefit from the collected ConnectedFactories information with regard to 

the digitalization of manufacturing. For example, the ‘Digital Transformation Cases Catalogue’ is 

a dynamic resource that brings together inspiring Industry 4.0 use cases and demonstrators. 
This catalogue focuses on providing a full insight of the digital transformation of processes that 

happen within the factory. This information is key to identify possible ways to accelerate and 

automate the processes that occur daily in factories. Additionally, ConnectedFactories warmly 

invited other national or regional projects to send them references of the use cases that the 
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projects would like to appear and promote in the ConnectedFactories’s catalogue. Joining forces 

with this project can be a win-win opportunity. 

3.4.1.7 Daedalus 

Daedalus project stands for “Distributed control and simulAtion platform to support an 

Ecosystem of DigitAL aUtomation developerS”. It is conceived to enable the full exploitation 
of the CPS (Cyber Physical System) concept of virtualized intelligence, through the adoption of a 

completely distributed automation platform based on IEC 61499 standard, fostering the creation 

of a Digital Ecosystem that could go beyond the current limits of manufacturing control systems 

and propose an ever-growing market of innovative solutions for the design, engineering, 
production and maintenance of plants’ automation.  

Being a FoF project, Daedalus targeted the following key objectives: 

• Ease the conception, development and distribution of intelligence into CPS for real-time 

execution of orchestrated manufacturing tasks. 

• Foster interoperability of CPS from different vendors at orchestration-level 
• Simplify the design, implementation and integration of optimal coordinating control 

intelligence of CPS. 

• Enable near-real-time co-simulation of manufacturing systems as a fully integrated 
“service” of a CPS. 

• Create a Digital Marketplace to simplify the matchmaking between offer and demand 

within the Ecosystem. 

• Conceive a multi-sided business model for the Automation Ecosystem and the 
corresponding business plans for its Complementors. 

• Foster the widespread acceptance of the Ecosystem platform to guarantee success and 

impact of Daedalus multi-sided market. 

Daedalus proposes the deployment of an Automation Ecosystem for a multi-sided market based 

on a new generation of distributed intelligent devices (CPS) that, existing both in the real and in 

the cyber (simulated) world, can be aggregated, orchestrated and re-configured to exhibit 
complex manufacturing behaviours that optimize the performance of future shop floor. 

This project deployed various technologies including Cognitive and artificial intelligence (AI) 

technologies and machine learning, Intelligent machinery components, actuators and end-

effectors, ICT solutions for modelling and simulation tools, Programming Languages and 

other Programming Frameworks – Software Development Kits (SDKs). 

3.4.1.7.1 Relevance to OPTIMAI  

Daedalus focused on the development of cyber-physical systems which is closely related to 

Digital Twin systems considered in OPTIMAI. Furthermore, it employed various AI technologies 

like cognitive intelligence, machine learning, intelligent machinery components etc., yet at less 

degree than OPTIMAI, which is fully focused on AI. Overall, OPTIMAI anticipates exploiting and 
integrate artificial intelligence (AI) technologies and machine learning algorithms in various 
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manufacturing processes including the fields of computer vision, quality control and defect 

detection. 

3.4.1.8 DIGICOR 

DIGICOR – “Decentralised Agile Coordination Across Supply Chains” developed novel 

collaboration concepts and implemented an integrated platform that significantly reduces the 
burden to setup production networks and collaboration between SMEs. The main objective of 

this project was to address the integration of non-traditional, small but innovative companies or 

service providers into the complex supply chain of large OEMs. By providing relevant technology 

support at one place, the DIGICOR Collaboration Platform aimed to shorten the time to jointly 
respond to business opportunities and simplify the management and control of the production 

and logistics networks. It was open to third parties to add services for advanced analytics, 

simulation, or optimization etc. The platform provided seamless connectivity to the automation 

solutions, smart objects, and real-time data sources across the network. 

 

Figure 9. Conceptual architecture of DIGICOR Platform. 

According to customer demands, novel features had to be developed and produced in very short 

time with close collaboration of OEMs and high-tech SMEs in an ad-hoc production / supply 
network. Both parties, the OEM and the innovative SMEs (organized in industrial clusters), were 

provided with supportive infrastructure such as technical platforms, novel governance 

approaches, IPR framework, coordination tools and services to simplify the setup and 
management of ad-hoc production networks. 

The DIGICOR Platform provided essential coordination support to suppliers and OEMs along the 

complete collaboration process by utilising a secured IT infrastructure and a set of software 

tools for planning and controlling the production across the production network.  

3.4.1.8.1 Relevance to OPTIMAI  

Although the main objective of DIGICOR (to facilitate the collaboration between companies 

belonging to the same supply chain) is not aligned with the objectives of OPTIMAI, to do so, the 
DIGICOR platform provides a governance framework that specifies the model for knowledge 
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protection within the platform. This point is of special interest to OPTIMAI to develop its Legal 

and Ethical framework. No OPTIMAI partners were involved in this project. 

3.4.1.9 DISRUPT 

DISRUPT is an EU-funded project under the topic of digital automation. This project aimed to 

spearhead the transition to the next-generation manufacturing by facilitating the vision of a 
"Smart Factory", which requires flexible factories that can be quickly reprogrammed to provide 

faster time-to-market responding to global consumer demand, address mass-customisation 

needs and bring life to innovative products. 

Through DISRUPT, traditional automation pyramid will be disrupted by utilising the ICT 

capabilities to facilitate in-depth (self-)monitoring of machines and processes, provide decision 

support and decentralised (self-)adjustment of production, and foster the effective 

collaboration of the different IoT-connected machines with tools, services and actors. By 

doing so, the DISRUPT project allowed seamless communication of information and decisions 

from and to the plant floor and facilitate efficient interaction with value chain partners. 

 

Figure 10. Conceptual Framework of DISRUPT. 

The DISRUPT project set the following specific objectives: 

• Provide ICT support in manufacturing execution: offer a multi-sided, cloud-based 
platform for large corporations and SMEs to optimize business goals. 

• Materialise ICT-enabled innovation in manufacturing: unify automation hierarchy of 

IoT and CPS production systems under a seamless data-intensive modelling approach. 

• Implement modular, decentralized production topologies: integrate Smart Objects 
into analytics, simulation and optimisation tools for efficient decision support in the 

context of plant's virtual production model. 

• Devise novel and coherent business models: sustain individual strategies and visions 
of manufacturing companies and especially SMEs, while optimizing the entire 

manufacturing chain. 

From a technological perspective, DISRUPT envisions each element of production to be 
controlled via the IoT by its virtual counterpart. The collected data will be analysed to detect 
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complex events that trigger automated actions. By combining modelling, simulation and 

optimization, DISRUPT will enhance decision support over a secure and flexible "plug and play" 

platform that will allow engineers from different disciplines to collaborate in developing 

services. This cloud-based platform will eventually accommodate the anticipated high data 

volume and computational needs, while offering accessibility via any device anywhere in the 

world. 

3.4.1.9.1 Relevance to OPTIMAI  

To increase its flexibility and efficiency, factories need to be able to obtain information in real-

time across physical production systems for better decision making. To this end, DISRUPT and 

OPTIMAI share a common objective: to manage data processing in an Industry 4.0 context. 
OPTIMAI could benefit from the integration and realization of data collection and knowledge 

management proposed in DISRUPT. 

OPTIMAI can profit from the experience that DISRUPT project offered in the domain of machine 

and process monitoring, modelling, simulation and optimization through the employment of ICT 

tools, the enhanced utilization of IoT and the development of virtual models for certain 

production elements. These services will provide OPTIMAI with the ability to integrate such 
technologies and platforms into certain activities including among others augmented reality, 

predictive maintenance, IoT and digital twins. 

3.4.1.10 FAR-EDGE 

FAR-EDGE was a promising project to offer “Factory Automation Edge Computing Operating 

System Reference Implementation”. The main focus of the project was the adoption of 

decentralized automation architectures from manufacturers (including edge computing), which 

required mitigation of the following key challenges [16,17]: 

• IoT/CPS implementation, deployments and standards still in their infancy. 
• Lack of a well-defined and smooth migration path to distributing and virtualizing the 

automation pyramid. 
• Lack of shared situational awareness and semantic interoperability across the heterogeneous 

components, devices and systems (including manufacturing CPS-based automation 
environments). 

• Lack of open, secure and standards-based platforms for decentralized factory automation. 

The migration from the conventional centralized control to IoT/CPS-based decentralized control -as 
offered by FAR-EDGE- is shown in Figure 11. Technologies: The project was highly involved in IoT, 

Edge/Fog computing, as well as Distributed Analytics and Simulation. 

3.4.1.10.1 Relevance to OPTIMAI  

OPTIMAI envisions to employ technologies like IoT, Cloud/Fog computing and decentralized 
processing (blockchain etc.). Thus, the experience of FAR-EDGE may be exploited to speed up 

preliminary research. On the other hand, since OPTIMAI strongly adopts AI-technologies, it may 

give feedback to FAR-EDGE as of how to upgrade the intelligence of its techniques by 

incorporation of AI.  
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Figure 11. Migration from the conventional centralized control to IoT/CPS-based decentralized control within FAR-
EDGE [16]. 

3.4.1.11 NIMBLE 

NIMBLE was a FoF project to build a “Collaboration Network for Industry, Manufacturing, 

Business and Logistics in Europe” [18,19]. NIMBLE aimed to address 5 main escalating 

objectives: 

• Develop the collaboration infrastructure with core services.  

• Ensure Ease of Entry and Ease of Use. 

• Grow the use of the platform. 
• Master the platform and achieve higher maturity levels. 

• Ensure Trust, Security, Privacy, Reputation and Information Quality. 

NIMBLE actually targeted the development of the infrastructure for a cloud-based, Industry 4.0, 

IoT-enabled B2B platform on which European manufacturing firms can register, publish 

machine-readable catalogues for products and services, search for suitable supply chain 

partners, negotiate contracts and supply logistics, and develop private and secure B2B and M2M 
information exchange channels to optimize business workflows. The infrastructure was 

developed as an open-source software under an Apache-type, permissive license. The 

structure of NIMBLE is shown in Figure 12 [19]. 

3.4.1.11.1 Relevance to OPTIMAI  

OPTMAI may benefit from NIMBLE by exploiting the experience gained in the areas of IoT, and 

Cloud Computing, which are key-ingredients to OPTIMAI. Of course, OPTIMAI is by definition 

expected to take these techniques to a higher level by incorporation of AI. No OPTIMAI partners 

were part of NIMBLE; but this can pave the way for new partnerships and collaborations. 
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Figure 12. Structure of NIMBLE. 

3.4.1.12 SAFIRE 

The primary objective of the SAFIRE project (Cloud-based Situational Analysis for Factories 

providing Real-time Reconfiguration Services) was to develop cloud-based analytics and 

reconfiguration capabilities that provide: 

• Both reactive and predictive reconfiguration for both production systems and smart 
products. 

• Flexible run-time reconfiguration decisions during production rather than pre-planned at 

production planning time. 
• Real-time reconfiguration decisions for optimisation of performance and real-time 

production and product functions 

The advanced analytics and reconfiguration capabilities developed in SAFIRE based on mastering 
the big data challenges associated with manufacturing (sensor and process data), enterprise 

data and smart product data to provide advanced analytics that allow manufacturers to address 

production system behaviour forecasting and to establish optimisation methods that are 
integrated into the design and product chain. The SAFIRE infrastructure is shown in Figure 13 

[20]. 

3.4.1.12.1 Relevance to OPTIMAI  

OPTMAI and SAFIRE work both within the industry 4.0 framework, but seem to have different 
directions and goals. However, the predictive analytics engine of SAFIRE may be an asset for 

the development of predictive maintenance procedures of OPTIMAI, and even be used as 

comparisons baseline. Furthermore, big-data processing techniques may also be adapted to 

OPTIMAI activities. No OPTIMAI partners were part of SAFIRE; but this can pave the way for new 
partnerships and collaborations. 
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Figure 13. The infrastructure of SAFIRE. 

3.4.1.13 VFOS 

The VF-OS (Virtual Factory Operating System) was a FoF project that targeted the following key 

objectives [21]: 

• Development of an Open Operating System (vf-OS) and Software Development Kit (OAK) 

for Factories of the Future that to be the reference system software for collaborative 

manufacturing and logistics processes including its associated resources and data. 

• Development of an Open vf-OS Platform, including a Multi-sided application marketplace 
and development studio, to become the Apps Store for Manufacturing industry. 

vf-OS was composed of a Virtual Factory System Kernel (vf-SK), a Virtual Factory Application 
Programming Interface (vf-API) and a Virtual Factory Middleware (vf-MW) for interoperable and 

secure collaboration among supply networks, enterprises, machines, data and objects. 

The technologies employed in VFOS as are shown in Figure 14 [22]. 

 

 

Figure 14. Technologies employed in VFOS. 
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3.4.1.13.1 Relevance to OPTIMAI  

Although VFOS does not consider any AI enhancements, it employs numerous technologies that 

are also part of OPTIMAI, such as Cloud Computing, Data Analytics, IoT etc. Thus, OPTIMAI 

may take advantage of existing work and take it to a higher intelligence level by incorporation of 
AI technologies. 

3.4.1.14 SCALABLE4.0 

SCALABLE4.0 was about the development of scalable automation for flexible production 

systems [23]. The main objective of the ScalABLE 4.0 project was the development and 

demonstration of an open scalable production system framework (OSPS) that enables 

optimization and maintenance of production lines 'on the fly', through visualization and 

virtualization of the line itself; this practically means real-time decision making. This became 
possible by integrating enterprise information systems, automation equipment and open APIs 

for system optimization. The concepts of SCALABLE 4.0 is shown in Figure 15 [24]. 

 

Figure 15. Concepts of SCALABLE 4.0. 

3.4.1.14.1 Relevance to OPTIMAI  

The work made in SCALABLE4.0 may be exploited by OPTIMAI as well. Optimization and 

maintenance may be enhanced by AI and be included in OPTIMAI’s predictive maintenance, 

quality control and zero-defect manufacturing. Furthermore, visualization and virtualization may 
provide feedback for OPTIMAI’s AI-enhanced digital twins and augmented reality. 

3.4.2 Projects focused on quality control and zero-defect manufacturing  

The mainly focused areas of zero-defect manufacturing concept are to avoid completely the 

defects in a production environment, to reduce faults and cost. It is important to increase 

productivity, competitiveness, as well as a higher resource and energy efficiency.  

In what follows, the selected European projects that belong to EFFRA (European Factories of the 

Future Research Association) are presented that focus on Zero-defect manufacturing. 

3.4.2.1 QU4LITY 

QU4LITY stands for an “Autonomous Quality Platform for Cognitive Zero-defect 

Manufacturing 4.0 Processes through Digital Continuity in the Connected Factory of the 

Future”. It is a European project implemented within Industry 4.0 and dealt with autonomous 
quality and zero-defect manufacturing. This project implemented autonomous ZDM strategies 
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in automotive, aeronautics, railways, etc. QU4LITY exhibited an open, certifiable and highly 

standardized shared data-driven ZDM product and service model for Factory 4.0. It developed 5 
strategic ZDM plug & control lighthouse equipment pilots and 9 production lighthouse facility 

pilots in a realistic and replicable way. The main objective of this work was the development of 

an open platform autonomous ecosystem, to achieve zero-defect across all phases during 

production and process lifecycle of SMEs. Among the most important outcomes of this project 
were the improvement of manufacturing, the enhancement of time decision making, as well as 

the elimination of the gap between predicted and real production process [25–28].  

As depicted in Figure 16, it represents a ZDM production model for smart industry in a realistic 

way, focusing on operational and energy efficiency, defects elimination, as well as customer 

experience.  

  
Figure 16. QU4LITY’s framework overview [26]. 

3.4.2.1.1 Relevance to OPTIMAI 

Under QU4LITY, VIS will provide the simulation models which will be further extended for the 

training of AI systems according to the OPTIMAI requirements. 

In addition, under QU4LITY, ENG developed and integrated a range of digital enablers which 
supported the QU4LITY autonomous quality paradigm, as well as performed the tasks regarding 

the Reference Architecture, Open APIs and Blueprints for Autonomous Quality Solutions.  Hence, 

being a strong ICT solution provider, ENG will bring its expertise on the project in the fields of 
data analytics and visualization, 3D modelling and simulation, software development and 

integration activities. 

Particularly, for the metrology domain, in QU4LITY, the case is focused on enhancing industrial 

machines with measurement solutions, including hardware and software metrology systems, as 

well as its digital automation definitions. UNIMETRIK is a technology provider deploying a related 

solution in one of the demonstrators. UNIMETETRIK Role in QU4LITY concentrates on the 
definition and development of machine measurement solutions. This will include hardware and 

software metrology systems. It will bring its expertise in the digital automation definitions. 
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3.4.2.2 ForZDM 

ForZDM stands for “Integrated Zero-Defect Manufacturing Solution for High Value Adding 

Multi-Stage Manufacturing systems”. The aim of this project was the development and 

demonstration of tools to support the rapid deployment of ZDM solutions in industry. The 

ForZDM project integrated multi-level system modelling, big data analysis, CPS (Cyber Physical 
Systems) and real-time data management to deliver an innovative ZDM methodology for the 

purposes of production and quality control of multi-stage manufacturing systems. This 

methodology was implemented and validated in manufacturing of jet engine shafts, medical 

microcatheters and railway axles. 

The reference architecture of this project is shown in Figure 17 and consists of: 

• Data Acquisition System which gathers and synchronizes all data of production line, 
such as materials quality data, process data, machine state data, production flow related 
data.  

• Data Management Platform which stores updates and extracts features to be analyzed 
further.   

• Data Correlation System which correlates the information between production process 
and resource data. 

• Error Budgeting and Root Cause Analysis tool which characterizes the defect 
correlations in different production stages. 

This approach dealt mainly with the diagnosis of defects by using preventive and corrective 
mechanisms with real-time control actions. The main result of this work was to achieve near zero 

defect manufacturing, emphasizing on the production of high-value and high-performance parts 

[29,30]. 

 

Figure 17. The ForZDM architecture [29]. 
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3.4.2.2.1 Relevance to OPTIMAI 

No partners were involved in this project. 

In OPTIMAI, we will consider the methodologies used for data correlation, as well as machine 
learning-based analysis for zero-defect manufacturing. 

3.4.2.3 STREAM-0D 

STREAM-0D stands for “Simulation in Real Time for Manufacturing with Zero Defects”. This 
project aimed to accomplish zero defect production, by reducing the produced products 

variability and increasing the production flexibility, through an innovative control system 

integrated into production lines. The specific characteristics of products, such as dimensions and 

construction materials may differ between the production lines of an industry. That makes the 
whole production prone to faults and misleading, negatively affecting the flexibility of production 

flow, duration and eventually the quality of products. This task is what STREAM-0D managed to 

resolve. By using multi-physics simulation models, fed with real time measurements data, it 
enabled the prediction of product quality. Through the use of these models, workers could 

control the crucial steps of production in order to adjust the product to the exact design 

specifications. Some of the state-of-the-art technologies employed are shown in Figure 18. 

This project was based on constant analysis, real-time supervision and monitoring of production 

line, predictive maintenance, as well as continuous training of their operators. Its main objective 

was to enable industries to modify their manufacturing processes in real time, introducing smart 
decisions based on prediction models. As a result, the production efficiency was enhanced, 

whereas time and money were saved [31]. 

 

Figure 18. The STREAM-0D’s framework [31]. 

3.4.2.3.1 Relevance to OPTIMAI 

No partners were involved in this project. 

In OPTIMAI, some of the state-of-the-art technologies in real time inspection of raw materials 
will be investigated focusing on ZDM. As in the case of the STREAM-0D project, OPTIMAI aims to 

increase the productivity of manufacturing procedures via the reduction of rejected parts and 

the control of the process. That could be accomplished through the implementation of real-time 
monitoring systems on specific machine tools to adjust online the manufacturing parameters 
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increasing that way the performance of the production. Furthermore, the development of 

forecasting models in order to enhance the production efficiency coupled with high savings in 
costs and times in manufacturing procedures are some of the common strategies applied in 

OPTIMAI and STREAM-0D. 

3.4.2.4 Z-Fact0r 

Z-Fact0r was a promising project to offer “Zero-defect manufacturing strategies towards on-

line production management for European factories”. This solution, as depicted in Figure 19, 

was composed of five multi-stage production-based strategies, targeting (i) the early detection 

of the defect (Z-DETECT), (ii) the prediction of the defect generation (Z-PREDICT), (iii) the 
prevention of defect generation by recalibrating the production line, as well as defect 

propagation in later stages of the production (Z-PREVENT), (iv) the reworking/remanufacturing 

of the product, using additive and subtractive manufacturing techniques (Z-REPAIR) and (v) the 

management of the aforementioned strategies through event modelling, KPI monitoring and 
real-time decision support (Z-MANAGE) [32,33].  

Each presented strategy was activated based on the nature of the detected fault; each fault 
reduces production quality, creates defects, and increases expenses to the company. This 

holistic approach results predictions were above 95% of success. The main result was the 

development of a multi-parametric model along with the early-stage decision support system 
for inspection and control of production. Further achievements included the development of 

data-driven techniques for fault detection and fault tolerant control, the development of the 

early-stage inference engine, monitoring system deployment and sensor data mining, as well as 

the overall system integration. 

Technologies: Defect prediction algorithms have been developed and finalized that allow the 

adjustment of manufacturing parameters in order to prevent defects. 

 

Figure 19. The Z-FACT0R’s strategies architecture [33]. 
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3.4.2.4.1 Relevance to OPTIMAI 

Under Z-Factor CERTH developed the multi-parametric models along with the early-stage 

Decision Support System for inspection and control, and contributed to the design, in the 

middleware and semantic components’ deployment, and system integration. These can be used 
as reference within OPTIMAI for the development of data-driven techniques for fault detection 

and fault tolerant control, the development of the early-stage inference engine, monitoring 

system deployment and sensor data mining, as well as the overall system integration. In 

addition, under Z-Factor, MSL acted as end-user and use case owner, and it collaborated 
effectively with CERTH.  

Microchip Technology, formally Microsemi (MSL), as end-user, will provide his previous 
experience in OPTIMAI, focusing on detecting defects, analyzing their causes and predicting 

emerging deficiencies in deficiencies in the manufacture of electronic assemblies. The OPTIMAI 

project will add to the technology adopted from the Z-Fact0r project of which Microchip 

Technology was a partner. This has been expanded towards OEE and machine health checking 
and will be further expanded to cover the processes that form part of the Microchip Technology 

use cases in this project. 

In this project, one of the companies of Innovalia Metrology strategic association, of which 

UNIMET is part, deployed and implemented digitalization technologies in different use cases to 

virtualize components and analyze dimensional information regarding them. This experience 
can be used as knowledge for certain scenarios of OPTIMAI pilots where it is required and 

feasible to perform this kind of studies. 

3.4.2.5 GO0DMAN 

GO0DMAN stands for “Agent Oriented Zero Defect Multi-Stage Manufacturing”. This project 
aimed to integrate and combine process and quality control of multi-stage manufacturing 

productions (i.e., industrial sectors such as automotive, household appliance and semiconductor 

manufacturing) into a distributed system architecture constructed by an agent-based CPS and 
smart inspection tools designed to apply ZDM strategies. This architecture is depicted in Figure 

20, and is composed of: 

• ZDM knowledge management to contain all information of the knowledge space and 
correlate analytic results with human interpretation. 

• ZDM data analytics to detect faults in manufacture at  an early stage and try to prevent 
them from happening. 

• Multi-Agent system to manage distributed and autonomous intelligent agents in 
different production areas, which cooperate allowing the distributed data collection and 
real-time decision making. 

• Smart inspection tools acting as the CPS that collects measurements and performs 
diagnosis tests during manufacturing. 

In this project, promising Machine-Learning and Multi-agent Systems were adopted to enable 

and manage intelligent environments concerning the Internet of Things. A new approach based 
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on cloud, Edge and Fog computing was delivered for the development of a decentralized multi-

level data analysis computing infrastructure that supports industrial CPS. In industry, new data 
models were proposed and deployed incorporating the interoperability and interconnectivity 

among heterogeneous production components as well as a variety of interlinking elements 

within the shop-floor. The proposed data models representing the GO0DMAN solution, integrate 

all the information required for the reduction of the defects, the evaluation of the respective 
causes and the tailoring of suitable strategies to avoid the propagation along the line, in the most 

efficient way. This project’s goal was the overall quality and industrial productivity improvement, 

providing a ZDM system architecture in various industries [34,35]. 

 

Figure 20. The GO0DMAN distributed system architecture [35]. 

3.4.2.5.1 Relevance to OPTIMAI  

The investigated AI approaches considering Cloud, Fog and Edge computing in a distributed 

environment, will be further investigated to handle many industrial scenarios, and support the 

development of industrial CPS. Also, the new solutions regarding the interoperability and 

interconnectivity among heterogeneous production components will be further investigated and 
adopted where they will be effective. Furthermore, AI-based models will be developed within the 

OPTIMAI project where the goal is to achieve early defect-detection of the manufacturing 

components. As in the case of the Go0DMAN project, these models will be tested in real case 
scenarios in industry to identify various defects and correct them prior to the termination of the 

manufacturing process. 

3.4.2.6 IFaCOM 

IFaCOM stands for “Intelligent fault correction and self-optimizing manufacturing 

systems”. Production strategies were developed in three different levels: i) closed-loop control 

of process parameters, ii) medium-time process tuning and iii) long-large performance 

improvement; these levels are depicted in Figure 21. This project approach relied on intelligent 
sensing and monitoring systems, which supervised production process, and applied decision 
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making for a high-level product quality. A virtual demonstrator was developed for defect 

diagnosis and prognosis, based on fuzzy logic algorithms; the system could detect faults in 
production, based on the input parameters [36,37].  

 

Figure 21. The IFaCOM architecture [36]. 

The main objective behind this project was to reduce all sources of variation, and to develop a 

method to eliminate the detrimental effects of unavoidable variance in material, part and 

processes quality that is the major source of defects in many manufacturing processes.  

The results among others, include i) the definition, developing, implementation and validation 

of a Simulation-based, Intelligent Fault Diagnosis and Prognosis System for Optimization over 

time, ii) the development of an intelligent self-adaptation and self-optimization methodology 
which relies on fuzzy logic (which has the ability to account for vagueness/imprecision and 

nonlinear behavior, which are common characteristics to manufacturing processes and systems) 

for part quality prediction, fault diagnosis and process parameters adjustment suggestions, iii) 
the establishment of sensor systems solutions and strategies for the real-time assessment of 

the status of the manufacturing system, the manufacturing process and the part during 

operation. 

3.4.2.6.1 Relevance to OPTIMAI  

No partners were involved in this project. 

The IFaCOM approach which relied on intelligent sensing and systems monitoring will be 

investigated in OPTIMAI with a view to enhancing the capabilities of the project for quality control 
and ZDM. Methods and techniques applied in IFaCOM project such as closed loop control of vital 

parameters or suitable measurements could potentially be utilized in OPTIMAI to restrain the 

propagation of defective parts along the production phase. Once data starts coming in from the 
OPTIMAI systems for data gathering this would then need to be assessed as to usefulness and 

effectivity. 
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3.4.2.7 ZDMP: Zero Defect Manufacturing Platform 

ZDMP stands for Zero Defect Manufacturing Platform [38,39] and aims at providing an 
extendable platform for supporting factories with a high interoperability level to cope with the 

concept of connected factories to reach the zero defects goal. In this context, ZDMP will allow 

end-users to connect their systems (i.e. shopfloor and ERP Systems) to benefit from the features 
of the platform. It provides Process and Product Quality support on top of a platform layer. 

ZDMP is a platform which consists of a suite of components that deploys and enables the 

ecosystem. The main functionalities of the platform are:  (i) To build applications that monitor, 
manage, and control connected devices, (ii) To collect and analyse data from connected 

devices.(iii) To enable secure connectivity and privacy between devices and throughout the 

platform, (iv) To manage interconnectivity from device/sensors, to machines, to factories, to 
partners, (v) To offer core API services to facilitate use, (vi) To allow integration with 3rd party 

systems/services and provide interoperability with other platforms, (vii) To automate and 

provide services for the intelligent Zero Defects ecosystem of the platform. 

 

Figure 22. The ZDMP technologies architecture. 

Focusing on the Zero Defects concept, ZDMP aims at supporting both process and product 
quality assurance in dedicated workstreams. The Prediction and Optimisation component 

supports these features for different aspects of manufacturing process, both during the 

preparation and the production stage. Optimisation largely relies on numerical methods to 
reduce changeover times, eliminate related errors, or keep process quality within a certain 

range. Additionally, predictor components rely on machine learning methods that provide 

prognostic models that predict future trends of the process quality to support decision making 

during operation. 
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The Digital Twin component is a digital representation of the current state of a manufacturing 

process and the characterisation and modelling of product features (physical characteristics, bill 
of materials, tolerances, etc), which provides data objects that describe different aspects of the 

physical and logical parts of a manufacturing process, including the status of the different 

(potentially distributed) components of the manufacturing system and product features. 

3.4.2.7.1 Relevance to OPTIMAI  

The goal of OPTIMAI and ZDMP are zero-defect manufacturing and increased product quality. 

Apart from this, they both share common aspects and technologies like big-data processing, 
prediction and optimization, use of digital twins etc., with OPTIMAI focusing on the integration 

of AI technologies. Since ZDMP has a head start, it can lead the way in the areas of common 

interest and then OPTIMAI may benefit from gained experience to introduce AI-upgrades. Joining 
forces of these two projects will be beneficial for European smart factories. 

3.4.2.8 KYKLOS 4.0   

KYKLOS 4.0 is the acronym for “Advanced Circular and Agile Manufacturing Ecosystem 

based on rapid reconfigurable manufacturing process and individualized consumer 

preferences”. The project aims at providing an Ecosystem which creates and supports the 

configurations, methodologies, production techniques, decisions and actions at all different 

levels and stages of the equipment manufacturing value chain. The purpose of this concept is 
the development of a CPS and AI technologically based innovative circular manufacturing 

ecosystem. This project is focused on enhancing energy efficiency and reducing raw material 

and time waste through to the second use of parts or material (including waste from 

manufacturing process). It also aims at applying a customer-centric approach, by producing 
personalized products with extended life cycle and on-demand manufacturing and best meet 

the Industry 4.0 objectives of operational excellence. KYKLOS 4.0 will deliver an advanced 

configuration variants’ framework and state-of-the-art production paradigm, embedding key 
technologies into a unified platform ecosystem to manage live product innovation, via building 

and shipping “configuration to specification”, through the seamless adaptation on new customer 

requirements. This involves a set of intelligent tools for real-time analytics and prediction, and 

recommender systems, further integrated into KYKLOS 4.0 configuration environment. 

In relation to the range of circular and flexible manufacturing aspects the KYKLOS 4.0 Ecosystem 

will provide a set of self-organizing, data driven modules (able to work independently) which will 
trigger dynamic interaction between them, and a smart orchestrator which will provide the 

ability to exchange customized product information between involved actors in the product life 

cycle, to dynamically handle any necessary production line changes (needs for energy and raw 
materials, fast reconfiguration and re-use) given a superior proficiency to tackle the varieties of 

personalized products and to deal with personalized product design issues and perform quality 

focusing on the extension of Product End of Life. 

The collaborative platform of this project is depicted in Figure 23. A virtual marketplace contains 

all the available services from different factories included in it, giving users the ability to set their 
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requests, monitor the status of services, receive recommendations, obtain early diagnosis by AI 

software, etc. [40]. 

 

Figure 23. The KYKLOS 4.0 collaborative platform [40]. 

The main result of this project will be the creation of favourable conditions for the rapid 

reconfiguration of manufacturing process, in order to continuously follow Circular 

Manufacturing Framework and the individualised consumer/customised products demands. 

3.4.2.8.1 Relevance to OPTIMAI  

CERTH is a partner in KYKLOS contributing to tasks related with Data Reduction Techniques & 

Fault Dependency on the production line, as well as with production equipment clustering. 

Advanced machine learning and deep learning algorithms will be exploited and deployed to 
develop an intelligent framework towards Prognostics and Health Management (PHM) at a 

component level, and process diagnostics with the ability of following up the overall system‘s 

health status, by relying on time-dependent condition-based features or indicators.  

The ML and deep learning approaches will be further investigated, exploiting parameter 

selection and regularization and applied in OPTIMAI for the development of AI components to 

perform quality control toward zero defect manufacturing.  
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3.4.3 Projects focused on AI-enhanced Digital Twins 

3.4.3.1 PreCoM 

PreCoM stands for “Predictive Cognitive Maintenance Decision Support System”. The 

project targeted a smart maintenance decision support platform, able to identify and locate 
faults in production. In particular, the project objectives were the deployment and testing of a 

predictive cognitive maintenance decision-support system whose capabilities include the: 

identification of damage, assessment of damage severity, prediction of damage evolution, 

estimation of remaining asset life, reduction of the possibility of false alarms, more accurate 
failure detection and ultimately the increase of the in-service efficiency of machines.  

It could estimate the total damage caused to the production and predict the propagation of this 
damage in the industry. This system was able to estimate the remaining life-time of industrial 

machinery and notify the production for any needed maintenance [41]. As shown in Figure 24, 

the construction of this system contains:  

• Data acquisition module which includes all the sensors and actuators used to monitor 
machinery health. 

• AI module which can estimate machinery health condition, using data analytics and ML 
algorithms. 

• Secure integration module which provides connectivity and security in the 
implemented systems, via a private cloud. 

• HMI module which includes all the ways of machinery and production handling. 

 

Figure 24. PreCoM’s architecture [41]. 

The main result of the project involves the implementation of this decision-support system which 

achieved an improvement in production, as well as a decrease in the waste of energy and 
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materials consumption, a reduction in faults and accidents rate etc. More specifically, the project 

demonstrated a direct impact of the platform on maintainability and availability (an increase by 
15%), work safety (a reduction of failure-related accidents by 30%) and costs (reduction on 

energy consumption by 6-10% and on raw material consumption by 7-15%). The results of the 

project were documented in detailed business cases for widespread industry dissemination and 

exploitation. 

3.4.3.1.1 Results relevant to OPTIMAI  

No partners were involved in this project. 

The proposed AI modules in DSS will be considered in OPTIMAI to enhance the intelligent 
capabilities of the project by deployed AI modules on the edge that will; i) optimize data 

acquisition through dynamic parameter calibration for improved accuracy and precision; and ii) 

provide an initial data processing layer for facilitating data exchange and further analysis. 
Moreover, both projects aim to develop and deploy a predictive maintenance decision-support 

system in order to identify and further localize the damaged parts during the production stage. 

The accurate failure detection as well as the adjustments of the manufacturing conditions during 

the construction of the part could potentially lead to the increase of the performance of the 
employed machine tools. 

3.4.3.2 FORTISSIMO 2 

FORTISSIMO 2 [42] was the second part of the project named “Factories of the Future 

Resources, Technology, Infrastructure and Services for Simulation and Modeling”. It aimed 
to enhance competitiveness of EU industries by providing advanced computing cloud services. 
Exploitation of high programming modelling and analytics led to an increase of quality in 
products and services in both small and medium enterprises. There are plenty of SMEs case 
studies where FORTISSIMO 2 gave solutions. Some of them are listed below: 

• Optimization of the anaerobic digestion process for biogas generation. A 
computational model was employed to simulate digesters’ function and optimize the 
biogas energy balance.  

• Predictive diagnosis services for the automotive industry. A system was developed 
to predict failures and mechanical problems by analyzing sensorial data. Results were 
employed to redesign automotive parts and apply modifications in maintenance. 

The outcome of this project was the development of a Fortissimo marketplace (Figure 25), that 
provides alternative/advanced models and tools via its operational high performance cloud 
infrastructure [42]. 

3.4.3.2.1 Results relevant to OPTIMAI  

No partners were involved in this project. 

The computing cloud services and high performance infrastructure implemented by 
FORTISSIMO 2 will be considered as a useful tool for OPTIMAI to further enhance the capabilities 
of the intelligent marketplace which will be implemented sharing AI models between industries 
for common tasks such as surface inspection. Additionally, the benefits of HPC cloud-based 
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advanced modelling, simulation and data analytics will be properly exploited by OPTIMAI and 
will support planning, implementation and realization of the project’s objectives. 

 

Figure 25. Marketplace services of FORTISSIMO2 [42]. 

3.4.3.3 DATAPORTS 

DATAPORTS a.k.a. “Data Platform for the Connection of Cognitive Ports” used several state-
of-the-art technologies to implement smart and cognitive ports between countries (Figure 26).  
It targeted the development of an industrial data cognitive platform, with a focus on the 
empowerment of data management for cognitive services in logistics and transportation 
companies. DataPorts was implemented in EU ports so as it is connected with existing digital 
systems and interacts with them providing information and data exchange. DataPorts enabled 
new services, advanced AI-based and data-driven business models, as well as cognitive 
applications. The platform can connect and unify all the digital seaports into an integrated 
ecosystem. DataPorts also enabled a secure data trading base, and by applying smart integrated 
AI systems, it improved the port value chain. It also provided a reliable and efficient way of 
business management that will strengthen the EU Single Market [43]. 

3.4.3.3.1 Results relevant to OPTIMAI 

Under DATAPORTS, CERTH contributed to Data governance and Distributed Ledger Technologies 
(DLT) supported interoperability for transportation, logistics and monetization of data. These 
technologies will be adopted to the architecture of OPTIMAI. DLT will provide a decentralized 
solution for real-time validity and traceability within an actual production line. DLT or Blockchain 
tools will be employed in the frame of the OPTMAI project in order to ensure the security of the 
firmware along the industries and the applied sensors as well as to verify the integrity of the AI 
models that will be utilized for several sensor measurements. 

UPV is co-Technical Coordinator in DATAPORTS. Its main role is to design the data platform in 
which transportation and logistics companies around a seaport will be able to manage data like 
any other company asset, to create the basis to offer cognitive services. 
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Figure 26. DATAPORTS architecture [43]. 

3.4.4 Projects focused on Computer Vision and Augmented Reality 

3.4.4.1 SERENA 

SERENA which stands for “Versatile plug-and-play platform enabling remote predictive 

maintenance” was focused on the development of a new design and implementation of 

predictive maintenance technologies, in order to enhance operating life of manufacturing 

systems. The purpose of this project was to provide advanced AI methods for predictive 

maintenance, AR-based operations for local maintenance support, as well as IoT systems for 
data collection of future industry.  

The aim of SERENA project is to build an Intelligent Manufacturing System able to improve 
manufacturing processes taking into account data gathering on the factory floor. SERENA 

proposed a solution based on a) remote access and data processing in cloud for predicting 

maintenance actions, b) advanced IoT system and smart devices for data collection and 
monitoring of machinery conditions, c) artificial intelligence and hybrid methods for predicting 

potential failures and improve process-related parameters d) AR based technologies for 

providing real-time animation and indications for a maintenance operator. 

The SERENA methodology is presented in Figure 27  [44,45]. The results of SERENA platform 

include the simplified maintenance and improved productivity in manufacturing process after a 

reduction in production times and expenses. Specifically, an increased in-service efficiency was 
achieved (by 10%) by reducing the failure rate, maintenance time and unexpected manufacture 

outage. More predictive maintenance was adopted as a result of the demonstration of more 
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accurate, secure and trustworthy techniques at component, machine and system level. Also, an 

increased accident mitigation capability was attained. 

 

Figure 27. SERENA  project methodology [45]. 

3.4.4.1.1 Relevance to OPTIMAI 

In SERENA Project, ENG was playing a key role in the implementation of the secure hybrid edge-

cloud platform for remote maintenance. ENG was also responsible for industrial exploitation 
activities and for bringing the project results closer to the market. Therefore, ENG will transfer 

the experience and expertise from this project and will contribute to the development of 

OPTIMAI security middle box as well as in the activities related to Blockchain framework for 
traceability and data integrity. 

Additionally, as shown in Figure 27, one of the demonstrators was related to the metrology 

industry, led by TRIMEK, one of the companies included in Innovalia metrology strategical 
association, as is the case for UNIMET. In this use case, several SERENA services were deployed, 

including remote machine monitoring systems and data analytics, whose outcomes can be used 

as experience for the metrology implementations in OPTIMAI project. 

3.4.4.2 PREVISION 

PREVISION (H2020-FCT-03-2019) stands for “Prediction and visual intelligence for security 

information”. The aim of this project was the development of a big data platform, to provide 
crime analysts and investigators with advanced techniques against cybercrime, and 

criminal/terrorism acts. The architecture of this work (Figure 28) was based on modules such as 

visual intelligence and data mining modules for cyber-criminal activities prevention and 

investigation. 

This platform could handle, manage and analyze in near-real-time massive web data streams, in 

order to build dynamic information graphs that represent criminal interrelations. Humanitarian 
sciences were combined with data science models and techniques, like advanced behavioral 
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analytics, near-real-time analysis, ML techniques for abnormality detection etc. A major 

contribution of this project was the cross-border security protection against crime [46]. 

 

Figure 28. PREVISION conceptual framework [46]. 

The results of PREVISION project include:  

i) a revised report on the characteristics of deviant behaviour, with a special focus on 
methods and models of predictive policing, for the detection of abnormal activities and 
predictive purposes. This contributes to combating cybercrime, organized crime and 
terrorism. 

ii) the deployment of semantic technologies, providing a computable framework for 
systems to deal with knowledge in a formalized manner. The associated semantic 
information models were generated by machine learning algorithms allowing the 
discovery of correlations not initially foreseen whereas new information was extracted 
using reasoning processes. 

iii) the adaptation of web HMI as the main element fostering applications integration and 
harnessing various solutions facilitating multi-dimensional data interaction, such as 
identification of radicalization and terrorist propaganda, protection of soft targets, fight 
against illicit trafficking and the analysis of cyber-criminal activities.  

3.4.4.2.1 Relevance to OPTIMAI 

In PREVISION, TRI is leading the WP on ethics and data protection and has prepared the project’s 
data management plan. This experience will be used as reference within OPTIMAI for the Ethics 

and Policy activities of WP9. TRI will contribute to the Ethics and Policy activities as it will provide 

strategic, ethical, legal and regulatory advice on new technologies, and related privacy, data 

protection, ethical and societal concerns. 



 

66 

3.4.4.3 Factory2Fit 

Factory2Fit stands for “Empowering and Participatory Adaptation of Factory Automation 

to Fit for Workers”. The concept of this project was human-centered and its goal was to 

combine the various skills of workers and motivate them for a total beneficial solution for 

industrial manufacturing enhancement. The core of this work was based on a dynamic user 
model that included physical and cognitive abilities. Considering workers as experts in their field 

made them more active and improved their performance. Furthermore, by combining their 

experience and skills with their performance feedback/award, workers were able  to correct their 

own mistakes and always be active in learning and educated. 

The Factory2Fit solutions have been developed based on extensive research into industrial 

needs, are highly relevant to manufacturing companies and address the biggest issues facing 
European factories today. These revolve around the following core issues; increasing worker 

empowerment, engaging the work community and improving the adaptability of both the 

worker and the workplace. 

The Factrory2Fit project core diagram is depicted in Figure 29; It is considered as an employee-

oriented system which contains the industrial experience of expert technicians and combines it 

with their feedback of their performance. it enhances production with adaptive solutions, and 
provide knowledge sharing. The main expecting results of this work is to enhance human-

robotics cooperation, to increase work satisfaction, working conditions quality and productivity, 

as well as to reduce stressful working conditions and production faults [47].  

 

Figure 29. Factory2Fit project core diagram [48]. 

As regards the results of the project, the following Industrial innovations were developed: i) a 
worker feedback dashboard, that privately provides the worker with statistics concerning their 

well-being, productivity and work satisfaction over time, aiming at developing a culture of self-

improvement. ii) a decision support system for dynamic task prioritisation and scheduling, that 
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uses artificial intelligence (AI) to optimally assign tasks to both workers and industrial machines. 

The Decision Support System (DSS) is integrated with industrial machines so that it can instantly 
register any errors in machines and transfer work to others where necessary. This saves 

significant amounts of time and facilitates the distribution of tasks in sequential production 

processes. iii) a participatory design with virtual factory models, that allow workers to visualise 

new production lines or factories well in advance of construction, and ensure that all elements 
are ideally positioned. iv) a Social Media Platform for Contextual knowledge sharing and an 

Augmented Reality Guided Assembly that allow workers to instantly exchange information and 

knowledge and also share adaptive and dynamic live instructions with each other. v) Off-site and 
on-site Training Tools that allow workers to train in a model factory that replicates their work 

environment. 

3.4.4.3.1 Relevance to OPTIMAI 

CARR led the communications and dissemination activities and the collaboration with the 

Factory2Fit External Advisory Board and will transfer their experience in OPTIMAI. 

Human operators are the key-asset in running a factory; providing them with easy-to-use tools 

and user-friendly working spaces enhances productivity. CERTH and VIS contributed to providing 
methodologies for maximizing the capabilities of the worker in the development of the factory 

of the future. 

The results of Factory2Fit will be reused and extended in the OPTIMAI project. CERTH and VIS 

will bring their know-how utilized for resource allocation and predictive models. More 

specifically, virtual factory models and simulations employed as engaging platforms for the 

hands-on co-design of work practices, training and knowledge sharing could also be investigated 
in the OPTIMAI project. Finally, Augmented Reality (AR) based tools will provide sharing of 

knowledge and guidance in the OPTIMAI just as in the case of the Factory2Fit project. 

3.4.4.4 KONFIDO 

KONFIDO (2016: H2020-DS-SC1-2016 RIA) stands for “Secure and Trusted Paradigm for 

Interoperable eHealth Services”. This work was focused on the healthcare domain, focusing 

on the eHealth concept. The vision of this project was to develop a cross-border e-health 
mechanism between countries. Such a model is very challenging, because it needs advanced 

digital security to protect personal data and privacy. This project was strongly connected with 

novel security extensions (Figure 30) including photonic technological security solutions 

(Photonic Physical Unclonable Functions, PUF), advanced cryptographic techniques 
(homomorphic), as well as the implementation of secure software (Security Information and 

Event Management, SIEM), transfer mechanisms (blockchain) and tailor-made e-IDs. 

The conceptual architecture of this work is the following: Data are collected from individual’s 

smartphones, and then transmitted along with various security levels for protection from cyber-

attacks or any other unauthorized access. In the first layer, there is a blockchain mechanism, 

which records and stores individually the data for each ID. Furthermore, abnormalities are 
detected by a Security Information and Event Management system. Analytics are applied and 

correctional strategies are enforced to resolve any vulnerabilities during the processing and 
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exchange of health data. The contributions of this project are exceptional, not only because it 

improves patients’ healthcare regardless of their location, but also because of the guaranteed 
and secure way of e-health provision [49,50]. 

 

Figure 30. Architecture of KONFIDO [50]. 

3.4.4.4.1 Relevance to OPTIMAI 

CERTH contributed to new methodologies to develop a scalable and holistic paradigm for secure 
inner- and cross-border exchange, storage and overall handling of healthcare data in a legal and 

ethical way. More specifically, knowhow and results on DLT technology and elements of the 

federated architecture of KONFIDO’s solution will feed the design of the DLT layer in OPTIMAI. 
Effective logging and auditing mechanisms will be brought on to the project providing traceability 

and liability support within the OPTIMAI identity management infrastructure. 

3.4.4.5 RECLAIM 

RECLAIM (H2020-DT-FOF-06-2019) stands for “Remanufacturing and Refurbishment Large 

Industrial Equipment”. The concept of this work was about remanufacturing and reinvestment 

of broken industrial mechanisms, to save industrial resources and faulty equipment instead of 

rejecting it. 

This work was based on a decision support framework as illustrated in Figure 31. Its goal was 

lifetime expansion, productivity enhancement and diagnostic maintenance of the 
electromechanical industrial equipment by using state-of-the-art technologies like IoT sensors, 

advanced prediction and process optimization techniques, fog computing, and augmented 

reality. There are demonstration cases in several countries, such as: 

• Lifetime extension of friction welding machines (Germany) 
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• Maintenance and upgrade of machines in the shoemaking industry (Spain) 

• Maintenance, refurbishment and upgrading of a bleaching machine (Turkey) 

• Predictive maintenance and refurbishment of a large woodworking production line 
(Switzerland) 

• Modernization and refurbishment of a white enameling line (Chez Republic) 

• Refurbishment and renovation of robot cells for making tubs (Switzerland) 

 

Figure 31. RECLAIM’s conceptual framework [51]. 

The innovation of this project is the development of a novel Decision Support Framework that 

guides the optimal refurbishment and re-manufacturing of electromechanical machines and 

robotics systems. The framework uses IoT sensors, novel prediction techniques using advanced 
ML models, and process optimization techniques to offer machine lifetime extension and thus 

increased productivity. 

A result of this work is the enhancement of industrial efficiency, as well as its financial 
strengthening. Its implementation in companies will enhance manufacturing and EU economy 

[51].  

3.4.4.5.1 Relevance to OPTIMAI 

During the RECLAIM project, CERTH contributed to the technological core of the project and 
mainly to the design and development of real-time optimization tools, ensuring optimized 

multiple criteria DSS-based maintenance scheduling. Furthermore, CERTH led all aspects 

concerning the Decision Support System and developed several algorithms (data-driven, model-
based, and knowledge-based) that are applicable for the detection, isolation and forecast of the 

faults, at component and machine level. Finally, CERTH also undertook the development of 

cybersecurity by design embedded solution. FINT is also partner of RECLAIM project and 

is focusing on the development of the IoT modules which will be used in the 
manufacturing environments for the equipment upgrade (IoT smart GW enabling Edge 

computing with heterogeneous processing). FINT is also developing and providing Machine 

Vision Systems to 3 out of 5 pilots. Moreover FINT is contributing to the holistic IoT platform 
enhancement and cloud/edge orchestrated smart equipment modules development, enabling 
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re-manufacturing and refurbishment with predictive maintenance capabilities.  This experience 

of both partners will be used as reference within the OPTIMAI project concerning the 
development of an innovative and state-of-the-art IoT Platoform and Decision Support System 

for early notification regarding defects during the manufacturing process.  

3.4.5 Summary of EU-funded projects relevant to OPTIMAI 

The most common and well-known methodologies in Industry 4.0 and Smart Manufacturing 

include Digital Twins, Fault Detection, Smart Metrology, Augmented Reality, Quality Control, 
Computer Vision, Predictive Maintenance, Zero-Defect Manufacturing and Internet of Things. 

These technologies were investigated and implemented in the related projects presented in this 

section. Each EU-funded project has deployed two or more of the aforementioned technologies, 

to provide solutions to certain tasks, according to their objectives, results and forthcoming 
advancements. Figure 32 and Figure 33 graphically represent the spread/distribution/presence 

of each technology into the examined projects. It is worth mentioning that FORTISSIMO2 

integrates the full list of these state-of-the-art technologies into the implementation realization 
of its engineering and manufacturing framework. 

 

Figure 32. Technologies employed in each FoF-11 EU-funded project. 
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Figure 33. Technologies employed in each EU-funded project. 

3.5 Results and Findings in Literature 

In this section, we present the main findings in literature regarding smart manufacturing 

domains where AI technologies have found great applicability. Due to the demand for advanced 
analytics to transform unprecedented volumes of data into actionable and insightful information 

for smart manufacturing, ML and mainly the breakthrough in AI deep learning received a lot of 

attention as the leading innovation in computational intelligence. 

Machine Learning (ML) is the ability of smart systems to learn and improve through experience 

gained from historical data, without the need of programming, or any other human intervention 

[52]. Various types of ML are available, such as Supervised, Unsupervised, Semi-supervised and 
Reinforcement Learning. Commonly used ML techniques are Artificial Neural Networks (ANNs) 

and Support Vector Machines (SVMs). Some quite accurate and generally acceptable 

descriptions for these technologies are provided in [3,53].  

Common ML methods are reviewed in [54] for intelligent manufacturing, and an extensive 

discussion on their strengths and weaknesses in a wide range of manufacturing applications is 

provided. In a recent comparative review study on machine learning algorithms for smart 
manufacturing, various well-known ML techniques, including Artificial Neural Network, Support 

Vector Machine, and Random Forest, were implemented for machining tool wear prediction [55]. 

Also, ML techniques including neural networks, fuzzy logic, genetic algorithms, and hybrid 
systems were reviewed for the decision making and monitoring of machining operations [56]. 

Traditional machine learning is usually designed with shallow structures, such as Artificial Neural 

Network, Support Vector Machine, and logistic regression, etc. By coping with limited 

handcrafted features, it achieves decent performance in a variety of applications. However, the 
massive data in smart manufacturing imposes a variety of challenges [57], such as the 

proliferation of multimodal data, high dimensionality of feature space, and multicollinearity 

among data measurements. These challenges render ML algorithms struggling and thus greatly 
impede their performance. 
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Deep Learning (DL) is an extension of ML and describes the ability of smart systems to imitate 

human brain functionality in tasks such as decision making and data processing. In smart 
manufacturing, DL has found significant applicability for processing and analysing big 

manufacturing data. The most popular DL methods are the following:  

a) Deep Neural Networks (DNNs). A DNN is resembled by an ANN with many hidden layers. 
The difference is in the training process. DNN uses deep learning as a class of machine 
learning algorithms with the following main aspects: (a) use a cascade of multiple layers 
of nonlinear processing units for feature extraction and transformation, (b) learn in 
supervised (e.g., classification) and/or unsupervised (e.g., pattern analysis) manners, and 
(c) learn multiple levels of representations that correspond to different levels of 
abstraction; the levels form a hierarchy of concepts. DNNs have more than three layers, 
trained to model non-linear problems.  

b) Convolutional Neural Networks (CNNs). They are among the most powerful deep learning 
techniques presenting notable capabilities on analyzing and classifying images. They are 
mainly employed in image processing applications (semantic segmentation, image 
classification, instance segmentation, object detection, etc.). Their neurons architecture 
is based on the features of images they process (width, height, depth, etc.). Typical CNNs 
have a similar structure with ANN and consist of one or more filters (i.e., convolutional 
layers), followed by aggregation/pooling layers in order to extract features for 
classification tasks. Since a CNN has similar characteristics with a standard Artificial 
Neural Network (ANN), it uses gradient descent and backpropagation for training tasks, 
whereas it contains additionally pooling layers along with layers of convolutions. The 
vector that is sited at the end of the network architecture can deliver the final outputs. 

c) Residual Neural Networks (Res-Nets). They are an extension of DNNs. They are highly 
considered in industrial applications where precision is vital for machinery health-state 
diagnosis. Res-Nets typically perform better than CNN-based approaches. 

d) RNN: Recurrent neural networks (RNN) are artificial neural networks (ANN) that utilize 
connections between units in order to form a directed graph along a sequence. RNNs use 
their internal memory to process such sequences, something that is not met in feed-
forward ANNs. However, RNNs suffer from short-term memory from the problem of 
vanishing gradient during back-propagation. This is solved by the Long Short-Term 
Memory (LSTM) algorithm. 

e) LSTM: LSTM excels over the original RNN due to the specific cell structure it has, which 
gives the algorithm the ability to add or remove information from this cell by structures 
that are called gates. These gates control this memorizing process by allowing the model 
to learn which information to store in the long memory and which to discard. The cell 
state is kind of like a conveyor belt. It runs straight down the entire chain, with only some 
minor linear interactions. Gates are a way to optionally let information through. They are 
composed out of a sigmoid neural net layer and a pointwise multiplication operation. 
LSTM has been applied in predictive maintenance and prognostics in manufacturing 
processes. 
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DL techniques enable people to (1) automatically learn from data, (2) detect underlying patterns, 

and eventually (3) make efficient decisions. With automatic feature learning and high-volume 
modelling capabilities, deep learning provides an advanced analytics tool for smart 

manufacturing in the big data era. It uses a cascade of layers of nonlinear processing to learn 

the representations of data corresponding to different levels of abstraction. The hidden patterns 

underneath each other are then identified and predicted through end-to-end optimization. Thus, 
DL offers great potential to boost data-driven manufacturing applications [58]. There are several 

review papers extracted from the related literature, which show the actual implementations of 

ML and DL methods in factory operations within the smart manufacturing domain.  

The authors in [59] performed a review study focused on Applications and Challenges of 

Machine Learning Techniques in the domain of Smart Manufacturing. This study provides an 

overview regarding several ML algorithms (e.g. support vector machine, k-nearest neighbor, 
neural network etc.) which bring notable improvements inside different manufacturing areas, 

such as optimization, quality control, prediction of failure, cost reduction and transparency. 

Future trends of ML applications for smart manufacturing are also discussed. 

Additionally, a systematic review of recent ML application for manufacturing processes was 
presented in [60]. This review study focused on the efficient application of various DL models 
including Convolutional NN and other Deep NN architectures, in certain Smart Industry 
processes such as image recognition and object detection, thereby enhancing industrial 
solutions. 

In another review study [58], a comprehensive overview of deep learning techniques is 

presented with the applications to smart manufacturing. In particular, deep learning methods 
are discussed concerning their applications in Smart manufacturing for improving system 

performance and decision-making, as well as for optimizing production systems. Typical Deep 

Learning models such as Recurrent NNs, LSTM and Deep CNNS play a key role in automatically 

learning from data producing different levels of data analytics, such as diagnostic and predictive, 
mainly used for fault assessment and defect prognosis of Manufacturing systems. A comparison 

between different deep learning models, CNNs, RNNs, LSTM and Auto Encoder, highlighting their 

pros and cons in the areas of product quality inspection, fault diagnosis, and defect prognosis. 

Figure 34 depicts an overview of deep learning enabled advanced analytics for smart 

manufacturing, highlighting the different levels of data analytics, including descriptive analytics, 
diagnostic analytics, predictive analytics, and prescriptive analytics. With the advanced analytics 

provided by deep learning, there are many benefits which include reducing operating costs, 

keeping up with changing consumer demand, improving productivity and reducing downtime, 

gaining better visibility and extracting more value from the operations for 
globallcompetitiveness. It is noted that DL plays a key role in many aspects of the smart 

manufacturing domain. 

However, there is no previous review study or paper to discuss the ML and DL applications 

towards the domains investigated in this deliverable, including Artificial Intelligence for Industry, 

Metrology, AI-enhanced Digital Twins, IoT sensors, Computer Vision, Augmented Reality and 

Zero-defect manufacturing. 
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Figure 34. Deep learning enabled advanced analytics for smart manufacturing. 

In what follows, we present the articles found in the related literature which encapsulate the AI 
technologies in each one of the above fields of smart industry. The reviewed articles are listed 

below, in chronological order (yearly) from oldest to newest for the respective period (Jan. 2015 

to April 2021). 

3.5.1 AI for industry 

3.5.1.1 2016  

Klancik et al. proposed in [61] an automatic programming approach of CNC machine tools using 

artificial intelligence methods. The methodology takes into consideration the digital CAD model 

of the part and the introduced system automatically creates a CNC program which can lead to 
accurate and efficient results during material removal processes. The suggested system utilizes 

NSGA-II multi-objective optimization and swarm intelligence. More specifically, the prediction 

module proposes suitable values on the machining parameters, as well as the appropriate tools 
and tool paths of the machining process. The suggested methodology was experimentally 

validated in a use case of a machining process and the results showed that with the aid of 

Artificial Intelligence the material removal operations could eventually be automatically 

programmed.  
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Lover et al. [62] presented a study where several machine learning algorithms were examined 

in order to evaluate the most efficient one to predict the manufacturing cost of jet engine 
components. The results of the work revealed that GBT (Gradient Boosted Trees) and SVR 

performed better compared to Neural Networks and Multiple Linear Regression. The work 

proved that machine learning technology could be an affordable and efficient technique to 

estimate the cost of manufacturing parts during the early stage of the design process in an 
industry.  

3.5.1.2 2017 

Pou and Leblond discuss the outlooks of smart metrology systems [63]. Smart metrology is a 
candidate to replace the good old “worst-case scenarios”. Continuous monitoring can assess the 

status of the production process and eliminated unnecessary calibrations. Furthermore, 

methods of artificial intelligence can process the “Big Data” produced by the distributed sensors. 

3.5.1.3 2019 

Wang et al. proposed productions planning for additive manufacturing applications using a 

computer vision-based approach [64]. The proposed approach was to (1) sort tasks based on 

their heights, areas and remaining time to deadline, (2) project models on the printing plane, 
and (3) apply a vision-based method to find high quality packing solutions. According to the 

authors, despite the high efficiency of the method, there is still much space for improvements, 

e.g., fine-tuning of hyperparameters, upscaling to larger scenarios etc. 

3.5.2 AI for metrology  

Metrology in industry can be described as measurements methods that are used to quantify the 

quality of a product in order to examine if the produced part meets the requirements of the 

production. Depending on the applied manufacturing process and the application, certain 

physical parameters of the product need to be measured and compared to reference values or 

models. The main concept is the employment of several types of sensors within the process to 

measure some indicative variables in order to determine the quality of the product. In the past 

years, machine learning methods have been applied in measurement methodologies to achieve 

high standards during the production stage. One of the main reasons that machine learning 

technology is considered an appropriate approach in metrology science is based on the ability 

of machine learning algorithms to extract data and develop models from an existing database. 

These methods have been utilized in several contexts as  documented in the next paragraphs.  

3.5.2.1 2015 

Rana et al. [65] present a predictive data analytics and ML enabling metrology and process 

control for advanced integrated circuits (IC) fabrication. It is about the precise prediction of IC 

characteristics through electrical testing of the produced components. Predictive metrology 
combined with ML is used to investigate two cases, by using a scatterometry equipment, for the 

early prediction of deep trench capacitance modeling and the metal line resistance modeling.   
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In the deep trench capacitance have been used Multivariate Linear Regression models, as well 

as NN. As an overview, NN seems to be more accurate in predictions. Although, for the deep 
trench capacitance, a Partial Least Square model and a NN have been developed. As compared, 

the PLS performance tends to provide a better correlation to the real measurements. 

In the same sense in [66], Rana et al. have examined the physical critical dimensional of 18 nm 
half pitch pattern in EUV resist. For that purpose, have been implemented NN models and 

Multivariate Linear Regression models. Undoubtedly, NN seem to provide more efficient results 

in physical critical dimensional forecasting than MLR approach. 

Du et al. [67] propose a selective multiclass SVM classifier for surface classification using high-

definition metrology. This approach is implemented with a dual-tree complex wavelet transform, 

in order to analyze 3D surface and then a SVM-based classifier is used for classification of 
surface’s mined data. As it has been testified in real industrial data, the proposed two stage 

architecture effectively classifies clear engineering surfaces. 

 
Figure 35. Selective multiclass SVM classifier architecture[67]. 

Similarly in another study,  Du et al. [68] have developed an adaptive SVM-based classification 

system for various workpiece surfaces using high-definition metrology. The proposed 
framework of classification system is depicted in the following figure.  A Non-Subsampled 

Contourlet Transform is combined with a SVM classifier. More precisely the SVM classifier is 

based on Adaptive Particle Swam Optimization algorithm and a Varied Step-Length Pattern 

Search algorithm.  



 

77 

 
Figure 36. Classification framework [68]. 

It is claimed that this algorithmic-based approach can classify workplace surfaces in a high 

efficiency. This framework can be implemented in process monitoring, fault diagnosis and 

machine-tools condition forecasting, although the classifier has to be regulated each time a 
different surface is tested. 

Koblar and Gantar [69] have been occupied with surface’s roughness determination of semi-
finished products applying a combination of computer vision and ML. For this purpose, have 

been implemented classification techniques, in order to separate the acceptable roughness 

values, and regression models to estimate surface’s roughness level of every produced item. 

3.5.2.2 2016 

Kuo and Faricha [70] present an ANN approach for diffraction-based overlay measurement. In 

this research is investigated the precision improvement of forecasting in sidewall angles. For this 

purpose, they have been tested a feed-forward ANN model, a conventional linear model and a 
regression model. As an efficiency comparison result, it is claimed that ANN perform more 

accurate in offset shifting forecasting than both other models, reducing in that way 

inhomogeneous intensity deviations. The outcome of this survey is that optical scatterometry 

can be combined with ANN approach implementing a wider wavelength optical beans exposure, 
in order to estimate the overlay percentage. 

Kang et al. [71] have developed a semi-supervised application of VM based on semiconductor 
manufacturing. For this purpose, is used a Support Vector Regression model based on self-

training. This system is trained to handle the uncertainty of unnamed data and estimate them 

by applying Probabilistic Local Reconstruction models. The experimental outcomes of this 
application point can enhance in the efficiency of results by 8%, as well a reduction of 20% on 

training process of the system, in comparison with the classical SVR approach. 

3.5.2.3 2017 

In order to apply smart metrology into a workpiece there are some parameters that need to be 
specified [72]. The geometrical and functional characteristics of the object, as well as the need 

that serves this object are these features that have to be cleared. Implementing advanced smart 

metrology, a product life cycle could consist  of the following stages, products designing, 
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manufacturing stage and verification process of the total product. Product quality can be 

enhanced by enabling automation smart metrology-based systems.  The basic sectors of such a 
system includes the sensorial layer, the layer of material handling, the production layer and the 

monitoring layer.  It is clear that this system can be a steppingstone in Integrated Management 

Systems based on Advanced Process Control. 

 

 
Figure 37. Autonomous quality assurance system [72]. 

Terzi et al. [73] propose a virtual metrology modelling approach with optical emission 
spectroscopy data, able to replace the manually data mining way. As it has been tested on a real 

semiconductor manufacturing case, it is claimed that for this purpose CNN can surpass the Ridge 

Regression algorithm. 

Vakharia et al. [74] developed a feature extraction and classification approach of machined 

component texture images, by combining AI approaches combined with Wavelet transform. For 

the image texture identification have been used ANN and SVM methods, resulting in a highly 
precise identification performance between 87,5% and 100%. As it has been tested, it is claimed 

that ANN show a greater result than SVM in texture characterization. 

Shao et al. [75] present a support vector regression approach for highly precise prediction 
purposes of a 3D machined surface, via topography. For this task, is proposed a spatial-temporal 

based multioutput support vector regression model.  As it has been testified in engines’ cylinder 

block surface it is resulted that such an approach is able to predict surface’s topography, 
although the prediction process needs numerous times to be tested, as it is prone to misleading 

results. 

Kagalwala et al. [76] made a research focused on measuring characteristics on slightly thick (i.e. 
7nm nodes thickness) 3D surfaces in Semiconductor manufacturing, aiming at a highly accurate 

and efficient way. It is claimed that by exploiting properly numerous information canals, can be 

achieved precise measurements, independently the sensitivity difficulties and measurement’s 
quality. In the same sense is implemented a combination of Optical Critical Dimension metrology 

and ML. It has been concluded that, hybrid metrology combined with VM can enhance accuracy, 

although, measurements stability is under research. 

Susto et al. [77] investigate anomaly detection approaches in semiconductor manufacturing. 

Precisely speaking, this is a ML comparison research, between methods such as Principal 
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Component Analysis, Angle-based Outlier Detection, Local Outlier Factor, aiming to locate any 

inhomogeneities on the industrial data, of the etching process. It is claimed that the Local Outlier 
Factor approach seems to provide the most accurate result. 

Kholief et al. [78] propose a contactless novel ML approach for fault detection of steel surfaces. 

For that purpose, are implemented two types of classification techniques, a feed-forward ANN 
and a Deep Autoencoder Network. These classifiers are trained from flawed captured surface’s 

frames to classify steel defects (i.e., scratches, patches etc.). This system’s results are based on a 

1800 grayscale analysis verification and it is claimed that it has achieved an approximate zero 
error in fault detection, showing  an efficient result. The effectiveness of the proposed DAN and 

ANN is verified using 1800-grayscale images for six popular classes of steel defects that prepared 

by NEU as crazing (Cr), patches (Pa), pitted surface (PS), inclusion (In), rolled-in scale (RS) and 

scratches (Sc). 

3.5.2.4 2018 

Zhou et al. employed convolutional neural networks in Fourier-transform profilometry [79]. The 

image recognition and feature extraction capabilities of CNNs were exploited to enhance the 
method. Specifically, CNNs were employed to analyze the spectrum image in order to identify 

carrier frequency components associated with the details of the inspected object.  

Senin et al. [80] discussed the outlooks on measurement enhancement using disruptive 

technologies of artificial intelligence, explaining that AI can be used to take advantage of the a 

priori data, the measured object (even past measurements) and, in combination with a 

functional measurement model, accelerate the measurement procedure and make it more 
efficient. An example of IRM (Information-rich metrology) which leverages AI to perform the 

measurements can be found in the microelectronics industry, where scatterometry data is used 

to accurately predict track resistance and, therefore, preempt failures in integrated circuits. 

Delli and Chang [81] developed an in situ procedure for quality control in Additive Manufacturing 

procedures using the Support Vector Machine algorithm, image processing and a camera. 

Several stages of the process were captured and according to the geometrical characteristics of 

the printed part, a SVM model classified the procedure as ‘defective’ or ‘good’. With the aid of 

this technique, defect detection during the manufacturing procedure is feasible and could lead 

in eliminating waste of production time and feedstock material. Experiments in laboratory using 

PLA and ABS as feedstock materials demonstrated the effectiveness of the method. 
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Figure 38. Hardware setup [81]. 

In general, the quality of a machined surface can be evaluated via its surface finish, which is a 

parameter that is deteriorated if the tool’s wear is increased. Therefore, the measurement and 

the prediction of the surface roughness on a manufactured part is essential. In Pimenov et al. 

[82], several AI models were applied, such as random forest, standard Multilayer perceptrons 

(MLP), Regression Trees, and radial-based functions to provide information to the production 

line during the process about the expected surface roughness of the manufactured product. In 

addition, the parameters’ tuning of the employed models was accomplished via the grid search 

and the proposed methodology was tested on face-milling of a structural steel 45. 

 

Figure 39. Tool wear prediction utilizing RF models [82]. 
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Khang et al. [83] have studied a NN virtual metrology approach able to surpass the lack of data, 

based on transfer learning. In this work transfer learning is implemented in order to train new 

equipment’s VM models, by transmitting knowledge from already trained old equipment’s VM 

models. It is showed that NN are suitable for accurate and efficient predictions, independently 

of datasets unavailability and knowledge resources are reduced. 

 
Figure 40. Application of transfer learning to virtual metrology with multiple equipment sets[83]. 

3.5.2.5 2019 

Papananias et al. [84] developed an intelligent metrology informatics system based on neural 

networks for multistage manufacturing processes. The goal was to assess the quality of a 

product after the manufacturing process, which included heat treatment and machining. They 

employed a MLP network with eight inputs, one hidden layer with 10 neurons and one output. 
The inputs were associated with measurable properties, such as RMS values from inspection 

sensors, surface hardness of the material, etc. The predicted results were validated against 

experimental measurement and were found in good agreement. The presented model lacks the 
capability to quantify prediction uncertainties, thus, further development and improvement is 

possible. 

  

(a) (b) 
Figure 41. Intelligent metrology informatics system based on neural networks for multistage manufacturing processes 
[84]. (a) Architecture of the employed MLP. (b) Comparative coordinate measurement. 

Hou et al. [85] prepared a paper of a research related to AI on edge device for laser chip defect 

detection. Machine learning has been a major driver for improving semiconductor laser chip 
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manufacture process. The virtual metrology system was used to enable the manufacturers to 

conjecture the wafer quality and deduce the causes of defects without performing physical 
metrology. However, building the virtual metrology system required a large amount of classified 

chip images. Therefore, a fast, accurate, portable image classifier was needed to fit modern 

flexible semiconductor laser manufacture setup, even without Internet connection, based on a 

few pre-trained deep learning modes (AlexNet, ZFNet, and GoogLeNet) in this case. 

Wasmer et al. [86] propose a ML approach based on additive manufacturing using acoustic 

emission. Acoustic emission is used to collect data of surface and Reinforcement Learning 
technique is used to clarify the meaning of collected data. Combining both these methods is 

aimed to be accomplished an in-situ quality supervision. The developed approach seems to 

provide efficient real-time quality classification results, reaching a level of accuracy 74-82%.  

3.5.2.6 2020 

Lee and Kim [87] used convolutional neural networks for virtual metrology during 

semiconductor manufacturing. The proposed model combined a recurrent neural network and 

a convolutional neural network to extract time-dependent and time-independent features. The 
model performance was compared to its best-known competitor (elastic-nets) and it was found 

that a 8.48% decrease in process variability was achieved. 

 

Figure 42. Architecture of the proposed model [87]. 

Rendon-Barazza et al. proposed the incorporation of artificial intelligence into optical metrology 
systems [88]. They employed deep learning analysis in optical microscopy and achieved 

measurements of accuracy around 0.77nm, which is comparable to the accuracy of electron 

beam and ion beam methods. 
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Figure 43. Measurement of sub-wavelength objects using AI-enhanced optical microscopy [88]. Left: Conceptual 
representation of the setup. Right: Recorded intensity field. 

Kotsiopoulos et al. [89] developed a quality assurance system that is applicable in machining 

operations. The suggested technique automates the 3D inspection and the monitoring process 

of defective metal components via the employment of Deep Neural Networks. The necessary 
data were extracted from real production processes utilizing shop-floor sensors, an ultrasound 

scanner as well as a laser micro-profilometer. The production monitoring module analyzes data 

from the employed sensors for quality control tasks and suggests a fusion scheme in order to 

enhance even more the accuracy of the manufacturing procedure.  

 

Figure 44. Pre-training data for the 3D laser scanning tool [89]. 
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3.5.2.7 2021 

Charalampous et al. [90] presented a method that employed various regression-based machine 
learning algorithms to estimate the dimensional deviations between an additively manufactured 

product and its corresponding nominal digital 3D model. The introduced methodology was 

validated in real-life manufacturing parts with complex geometrical characteristics. 
Furthermore, a compensation technique was applied to adjust the dimensions of the digital 3D 

model in order to compensate the overall dimensional deviations of the printed object 

increasing that way the performance of the AM process.  

 

Figure 45. Surface Distance Maps on a freeform object [90]. 

3.5.3 AI-enhanced digital twins  

The main purpose of digital twins is production visualization, along with all its possible 
extensions and benefits, such as: comparisons between expected and actual behavior, virtual 

trial-and-error to identify best practices etc. Preliminary information in the area of the 

digitalization of the manufacturing industry can be found online [91]. This is further supported 

by research employing digital twins in the classic form, i.e. without AI integration. Zhang et al. 
[92] propose a product manufacturing digital twin (PMDT) model which consists of a five model 

pipeline and a new architecture of cyber-physical production system (CPPS) that focuses on the 

production phase in smart shop-floor. Lu and Xu [93] propose a path towards resource 



 

85 

visualization for developing cyber-physical production systems. However, most important for 

OPTIMAI is the incorporation of AI algorithms and techniques in digital twins, as described in 
following paragraphs. 

3.5.3.1 2017 

Vachálek et al. [94] suggested the use of digital twins on production lines. The physical 
production line works in parallel with a virtual one. Communication between the virtual and the 

physical system leads to optimized operational conditions by the use of genetic algorithms.  

3.5.3.2 2018 

Jaensch et al. [95] propose a combined model-based and data-driven concept of a digital twin. 
They show how to use machine learning in connection with suitable models, in order to archive 

faster development times of manufacturing systems. 

3.5.3.3 2019 

Wang et al. [96] presented a digital twin for fault diagnosis in rotating machinery. The digital twin 

acted as the reference structure for the physical system, which enabled the connection and 

provision of data and information in a unified model. The digital twin system could be used for 
fine-tuning the system (Figure 46) as well as fault diagnosis (Figure 47). The data collected during 

operation of the rotating system is fed into the digital twin, and it is processed to assess fault 

status. The system is quite promising as the assessment error is limited to around 5%. 

 

Figure 46. Digital twin mapping scheme by model updating; courtesy of [96]. 
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Figure 47. Digital twin model for a rotating system [96]. 

Xu et al. [97] suggested employing a digital twin approach based on deep transfer learning from 
fault diagnosis. The approach was deployed in two phases. First, a high-fidelity virtual model was 

explored to identify potential problems and train a deep neural network diagnostic tool. Then, 

the trained diagnostic was transferred to the physical system for real-time monitoring and 
predictive maintenance. The proposed approach was employed in a car-body production line 

(Figure 48). Through the dual fault diagnosis — in virtual and physical space — the risk of 

accidental breakdown was greatly reduced, making smart manufacturing sustainable, reliable, 

and efficient. 

 

Figure 48. Conceptual view of the digital twin based on deep transfer learning [97]. 
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Xia et al. [98] explored the capabilities of a digital twin to train deep reinforcement learning agent 

for smart manufacturing plants, and developed a control methodology, named Digital Engine, to 
schedule manufacturing tasks, identify optimal actions, and demonstrate control robustness. 

 

Figure 49. Architecture of the digital engine [98]. 

Wang et al. [99] developed an innovative digital twin to monitor and control welding processes 

during manufacturing. The digital twin was developed to visualize a digital replica of the physical 

welding for joint growth monitoring and penetration control. The digital twin was exploited in a 
decision-making strategy to meet quality requirements. According to the authors their 

methodology can be further improved by including additional parameters in their digital twin, 

such as heat transfer, fluid flow and joint microstructure based on advanced sensing and 

computational intelligence. 

 

Figure 50. Digital twin to monitor and control welding process [99]. 

Booyse et al. [100] proposed the concept of deep digital twins for detection, diagnostics and 
prognostics. The system was constructed from deep generative models which could learn the 

distribution of healthy data directly from operational data at the beginning of an asset’s life-

cycle. This approach had the benefit that it did not rely on historical failure data to produce an 
estimation of asset health. The authors demonstrated that the system was able to detect 

incipient faults, track asset degradation and differentiate between failure modes in both 

stationary and non-stationary operating conditions when trained on only healthy operating data. 
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Figure 51. Deep digital twins for detection, diagnostics and prognostics; courtesy of [100]. 

Franciosa et al. [101] employed digital twins targeting quality improvement. The benefits of their 

approach were (i) faster selection of process parameters; (ii) capability to automatically adjust 

process parameters by leveraging stochastic uncertainty; and (iii) real-time closed-loop control 
with adaptive selection of new set of process parameters.  

 

Figure 52. Digital twin for quality improvement [101]. (a) concept; (b) detailed; (c) pre-production. 

Zhang et al. [99] proposed intelligent process planning for digital twin manufacturing cell based 
on deep learning. According to their approach a deep residual network is first employed as the 

base architecture for the framework. The neural network could “understand” the design goals in 

a drawing or a 3D CAD model via its views and automatically retrieve relevant knowledge for the 

quick generation of theorical processes. Then, an evaluation twin was constructed to transform 
the theorical processes into practical operations and produce an optimal process plan. Finally, a 

test bed of the framework could be constructed to demonstrate the feasibility and effectiveness 

of the approach. 



 

89 

 

Figure 53. Framework of intelligent process planning [99]. 

Ali et al. [102] employed deep learning based semantic segmentation of µCT images for creating 
digital material twins of fibrous reinforcements, enabling the use of AI in finer manufacturing 

scales. A deep convolutional neural network was employed to generate the digital twin of 2D 

glass and 3D carbon fiber reinforcements. 

 

Figure 54. 3D visualization of the virtual and real specimens of 2D plain weave glass, and 3D orthogonal carbon 
fabrics [102]. 

3.5.3.4 2021 

A typical problem in manufacturing systems is that acquired signals have different time scales. 

Chakraborty and Adhikari [103] presented a digital twin model based on machine learning for 
such dynamical systems with multiple time-scales. The proposed model had two components: 

(1) a physics-based data processing component, and (2) a learning component for the time 

evolution of the system, based on machine learning. 
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3.5.4 AI-enhanced IoT 

Internet of Things (IoT) and their industrial counterpart (IIoT) can be thought of as internet-aware 

networks of smart devices like sensors and actuators. IoT and IIoT technologies can be employed 

in various applications facilitating real-time monitoring, analytics and decision support systems 

[104], and play, therefore, an important role in the general concept of Industry 4.0.  

A typical Industrial IoT architecture consists of the following components [105]: 

• Things: All industrial devices that need to be monitored by an Intelligent Edge Gateway. 

• Intelligent Edge Gateway: The software which interconnects Things and IoT Cloud. 

• IoT Cloud: This is the central platform of information, which collects gathers data and 

applies AI/ML techniques. 

• Business Integration and Applications: This refers to application systems that are 

important for planning and scheduling  production. 

There are four main categories of data that are used in IoT projects [106]: 

1. Measurement data: Physical parameters that are being monitored by sensors. 

2. Event data: unexpected incidents or important status changes of systems during 

operation. 

3. Interaction and transaction data: Data related to the inter-device communication, and 

human-device communication. 

4. Diagnostic data: Data about structural and operational health of mechanical systems 

and processes. 

Depending on the expected result there are three data analysis categories [105]: 

1. Descriptive data analysis: Organizing and management of data to provide a clear 
overview of the production line functionality. 

2. Predictive analysis: Prediction of faults before their occurrence by applying AI analytics. 

3. Prescriptive analysis: Proposal of solutions for any possible predicted fault. 

3.5.4.1 Frameworks and platforms 

Various IoT platforms are already available for applications in smart industry. Kamath et al. [107] 
have reviewed the following open-source platforms: 

• Eclipse Hono [108] provides interfaces that can be used for the connection and 
interaction of numerous IoT devices independently of their communication protocol. 

• Eclipse Ditto [109] is about a framework that supports IoT Digital Twins software 
pattern implementation. 
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• Apache Kafka [110] is proposed for real-time streaming applications. It records, stores 
and processes the acquired data, enabling the building of data pipelines. 

• Influx DB [111] is a real time series database -easy to setup and use- that can be used 
to store multiple data types over a time period. It is capable to handle million writes per 
second. 

• Grafana [112] is analytics and monitoring solution. It provides data source models and 
support for many time-series databases. It also enables users to visualize and trigger 
alerts based on metrics from multiple stored locations. 

etc. 

An interesting approach is the called SWoTI [113] platform, composed of different layers. Each 

of these employs a variety of tools and techniques to build smart applications that can process 
raw sensory data and support smart manufacturing. The overall architecture is depicted in 

Figure 55. 

 

Figure 55. A layered view of the Semantic Web of Things for Industry 4.0 (SWoTI) platform [113]. 

The layers of this platform are briefly described in the following paragraphs: 

• Device Layer contains all tools, devices, machinery and equipment employed in an 

industrial production process. 

• Edge Layer transforms the collected data into information using analytics-based 
methods and techniques, and enhances the interoperability between devices. 

• Cyber Layer operates as a collective information hub, which prepares data for the data 
analytics layer. This layer manages a massive amount of data collected by various 

distributed sources inside and outside the industry. Data ranges from the production 

process to the supply chain, offering that way an overview of the available information. 
According to the authors, an alternative technology solution in that layer could be a 
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decentralized and distributed across peer-to-peer sync blockchain network, where each 

participant could have data access in order to process them independently.  a 
blockchain [114] is considered a distributed, decentralized and constant system that 

keeps the information and data of the various transactions that may occurr in a specific 

person-to-person network. 

• Data analytics layer identifies underlying relationships among the collected data by 

applying AI-based industrial analytics algorithms. This way, it enables decision-makers 

to make optimal decisions. 

• Application Layer creates customized applications by using a wide variety of ML 

approaches, exploiting the data collected by previous layers. This layer is primarily 

concerned with the  presentation and visualization of the acquired knowledge to the 
users of the system. 

3.5.4.2 Embedded software and edge devices 

TinyML [115] is one of those recent developments in AI that enables the use of machine learning 
and deep learning on embedded devices. The popular TensorFlow (TF) library has been ported 

(TF Lite) to mobile and IoT applications [116] and platforms; Arduino Nano BLE SENSE and IoT 

[117,118], the Sparkfun edge [119] etc. are low-cost edge devices that can run SoA ML algorithms 
without the need for high-end processing systems. It must be noted though, that only trained 

DNNs can be run on such light-weight platforms; algorithm development and training still 

remains a complex and computationally demanding task, and heavily relies on high-end systems 

such as servers and cloud/fog computing. IoT sensor networks can benefit from the emerging 
Blockchain technologies [120,121] as a decentralized architecture for secure and reliable data 

sharing among nodes. 

 

Figure 56. Sparkfun Edge; Power by TensorFlow [119]. 
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The arrival of MicroPython [122] opens new ways for miniaturized smart devices. MicroPython 

is a Python 3 flavor optimized to run on microcontrollers. AI code can be developed on a PC and 
then transferred to a microcontroller, such as the PyBoard (Figure 57). This way, data acquisition, 

processing and decision making can take place on-site and in real-time. Of course, efficient AI 

algorithms are needed to make a robust machine learning model fit into the limited hardware 

of a microcontroller. 

 

Figure 57. PyBoard [122]. 

Digital Twin has demonstrated great value for smart factories in Industry 4.0. AIoT can be a 

critical part of implementing digital twins where the connected sensors and actuators can collect 
real-time data from production lines and send them to the digital twin running in the cloud. 

Moreover, AI technologies can enable an intelligent analysis of data and help to make smart 

decisions. 

3.5.4.3 Uses and applications in Industry 4.0 

A service-oriented digital twin model is proposed in [123], which uses an ontology-oriented 

knowledge structure to represent the knowledge about the manufacturing system from the 

sensing data. It also designs a vocal interaction system for knowledge retrieval based on speech 
recognition and text-tospeech synthesis. In [124], a knowledge graph-based digital twin model 

is introduced which is composed of four parts, i.e., feature extraction, ontology creation, 

knowledge graph generation, and semantic relation extraction. It can extract and infer 
knowledge from large scale production line data and enhance manufacturing process 

management via semantic relation reasoning. Real-time scheduling (RTS) in the smart factory is 

another hot research topic. In [125] a reinforcement learning-based RTS model is proposed, 

which can incrementally update and maintain the knowledge base in RTS during operations to 
respond to shop floor environment change. 

A typical example of AIoT application in the smart industry is the Printed Circuit Board (PCB) 
manufacturing. There are three scenarios that are related to AIoT systems with different sensors 

and devices, i.e., manufacturing, visual defect inspection, and machine fault diagnosis. First, 

industrial robots have been widely used in the production line of smart factories, e.g., for drilling 

and grasping. AI technologies can be used to improve their functionalities. For example, 
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Bousmalis et al. propose a deep robotic grasping model named GraspGAN [126], which bridges 

the domain gap between synthetic images and real-world ones via the pixel-level image 
translation and a feature-level domain classifier. To increase the safety, speed, and accuracy of 

autonomous picking and palletizing, Krug et al. propose a novel grasp representation scheme 

allowing redundancy in the gripper pose placement [127]. Second, PCB defect inspection carried 

out by workers manually is laborious and time-consuming. Recently, deep learning-based 
methods have been proposed for automatic real-time visual defect inspection [128]. Third, it is 

important to predict and diagnose machine faults from sensor data to reduce PCB defects, 

thereby increasing production efficiency and reducing losses. Although the digital twin system 
provides a useful mirror virtual environment for creating and testing new equipment and 

models, it is still challenging to fast adapt the trained model or control policy to the physical 

world. Thereby, more efforts should be made in the areas of domain adaptation, transfer 

learning, and mete-learning. Besides, since it is difficult to collect and annotate edge samples in 
the industrial context, zero-/few-shot learning is also worth further study. In addition, causal 

analysis of the product defects based on data and knowledge is also of practical importance. 

3.5.5 AI for computer vision  

Computer vision is the field of artificial intelligence that trains computational systems to visually 

interpret the real world. This means that computers should be able to identify objects and 
patterns by processing digital images, videos etc. using artificial intelligence techniques. 

Computer vision can be further extended to object classification (e.g., identify an object in an 

image) and instance segmentation (e.g., identify multiple objects of the same class within the 
same image). 

3.5.5.1 2015 

Yoo [129] conducted a review on deep learning techniques and more specifically on Deep 
Convolutional Neural Networks (DCNN) in the field of object recognition. Emphasis was mainly 

given to those employed in GoogleNet network. This review paper highlighted Deep learning 

techniques as significant and promising approaches for recognition tasks, outperforming other 

conventional methods in this realm.  

Shanmugamani et al. [130] employed various classifiers based on Bayes, ANN and SVM for the 

detection and classification of surface defects of used gun barrels, under the scope of proposing 
a computer vision-based approach. A total of 1000 images were initially split in 5 classes of 

defects and then multiple textural features were selected to train the classifiers, finally 

evaluating their accuracies. Among the tested classifiers, SVM showed the best accuracy of 

96.67%, emerging as the best classifier for this application. 
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Figure 58. Schematic diagram of experimental set up. 

3.5.5.2 2016 

Ondruska and Posner [131] propose a new method of unsupervised training for deep object 

tracking directly from raw sensor data. For this purpose, a four-layers feed forward Recurrent 
Neural Network (RNN) was utilized to learn a mapping from sensor measurements which were 

provided by a planar laser scanner using a 2D grid of 50x50 pixels. The whole process showed a 

considerable learning and prediction efficiency of the proposed network, having the capacity to 
perform well in a variety of future scenarios. 

Islam et al. [132] explored several Deep Learning models in the field of computer vision, hence 
applying AlexNet and VGG_S models on different datasets belonging to five different application 

areas, such as object, event, scene, expression and gender classification, to evaluate their 

efficiency. Considering remote sensing scene classification, authors proceeded to a comparison 

between the two models as well as with other state-of-the-art to assess their overall 
performance. In most of the cases, VGG S outperforms AlexNet model in the training phase, 

reaching a recognition rate of up to 93,3%, whereas their performance on certain datasets is 

better than the existing state-of-the-art deep learning models. 

Schwartzman et al. [133] employed state-of-the-art image classification techniques based on 

deep neural network architectures to significantly improve the identification of highly boosted 

electroweak particles produced by collision events at the Large Hadron Collider (LHC). For the 
purposes of image processing and computer vision tasks, they introduced a new data 

representation, namely the jet-image, which is defined by a 25x25 grid of size (0.1x0.1). Two 

different architectures of deep neural networks for image classification, Convolutional Neural 
Networks (CNN), and Fully Connected (FC) MaxOut networks, were trained to separate W (signal) 

and QCD (background) jets. The results of this study showed that deep neural networks 

classifiers significantly outperform state-of-the-art classification methods thus, providing new 

ways to visualize the information learned by the DNNs. 

3.5.5.3 2017 

DeCost et al. [134] proposed a system for classifying powder materials by employing machine 

learning methods in the domain of metal additive manufacturing. Feature detection and 
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description algorithms were applied to cluster, compare, and analyze powder micrographs, 

whereas a Support Vector Machine (SVM) classifier was utilized over the training and validation 
set of the micrographs collected. The proposed computer vision system achieves a classification 

accuracy of more than 95%. 

 

Figure 59. Schematic diagram illustrating the construction of SIFT-VLAD microstructure representations [134]. 

Mery & Arteta [135] explored several CNN models for the task of automatic defect recognition 

in automotive components, using a dataset of 47.500 cropped X-ray images of 32x32 pixels. After 
a comparative analysis and evaluation of 24 computer vision techniques (including deep 

learning), the best performance was achieved by a simple Local Binary Pattern (LBP) descriptor 

with a SVM-linear classifier obtaining 95.2% of accuracy. 

     
Figure 60. Examples of defects in real X-ray images of wheels from GDXray dataset [135]. 

García-Ordás et al. [136] proposed a new computer vision approach for classifying tool wear by 

employing a machine learning classification model. They Implemented a new shape descriptor 

able to capture image information, while using a dataset of greyscale images of 53 tools. The 

descriptor which utilized a SVM classifier, was compared to two other classifiers, demonstrating 
its performance superiority against other descriptors. The results showed accuracy values 

between 80.24% and 88.46% in the scenarios conducted. 
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Figure 61. Image capture prototype. The support in which the camera is placed and the LED bars employed are 
shown [136]. 

Wu et al. [137] discuss in their paper the application of certain deep learning algorithms, such as 

Convolutional Neural Networks (CNNs) and Fully Convolutional Networks (FCN) in computer 

vision. They pay attention to the advantages of deep learning in this field, especially to their 

strong capacity in feature extraction, comparing them to traditional machine learning. 

In their work, Vakharia et al. [138] explored textured surface image identification methodology 

employing SVMs and ANNs, as being promising Artificial Intelligence techniques used for 
classification, or identification in fields like fault diagnosis and manufacturing. Grey scale images 

converted through a 2D wavelet transform were used as the input dataset. The texture 

characterization efficiency for training using SVMs and ANNs reached 100%. 

Birlutiu et al. [139] proposed an innovative system based on machine learning that performs an 

automated defect detection in porcelain products. It is based on a Convolutional Neural Network 

(CNN) and uses a dataset containing grey scale images resized to 28x28 pixels. Several 
algorithms were compared and the best results were obtained using the CNN architecture, while 

the SVM comes with a slightly lower performance. 

3.5.5.4 2018 

Maggipinto et al. [140] test the performance of the proposed CNN-based model, which is 

considered the foremost choice for common vision problems such as object recognition. The 

CNN which used the 2D version of the input dataset of a 50x54 dimension, is capable of providing 

an effective handling of data without requiring any explicit features extraction. The proposed 
model was further compared with other non-DL approaches which are common in 

semiconductor manufacturing, exhibiting a better performance. 



 

98 

Silva et al. [141] introduced Machine Vision System (MVS) as a means to increase detection in 

quality control inspection, while they explore the main concepts and applications of the AI 
domain to Industry 4.0. They are in search of a method that could select the best AI framework 

for each kind of solution. However, the existing MVS solutions applied could improve quality 

inspection through the integration of AI technologies. 

 

Figure 62. MVS integrated with a simplified 4.0 Industry diagram [141]. 

Nguyen et al. [142] implemented a hybrid machine learning-based approach that performs 

classification of possible reduced order models. In the field of mechanics of materials, model 

recognition is achieved through the application of a CNN on a digital image of the mechanical 
test, after a 2D digital image and a 3D voxel image are inserted as required inputs. The proposed 

framework exhibits satisfactory prediction accuracy regarding the overall quality of the process.  

Arents et al. [143] proposed a model for automation of industrial tasks, that integrates 3D 

computer vision, artificial intelligence algorithms and industrial robots. The experimental system 

consists of Kinect V2 RGB+Depth camera of resolution 1920x1080 and Universal Robots UR5, 

providing multiple motion planning packages and algorithms The computer vision software 
includes two components, namely: Object detection and Object classification. In the second case, 

a CNN is deployed when the robot picks the object.  

3.5.5.5 2019 

Feng et al. [144] employed deep convolutional neural networks to achieve high-speed 3D 

imaging. They combined deep learning with profilometry using the structured light illumination. 

Upon proper training, the system could convert fringe images to 3D shapes at a rate of 

20,000fps. 

Liu et al. [145] employed deep learning for real-time 3D surface measurement in additive 

manufacturing. Their method consisted of a supervised deep neural network for image analysis. 
The key idea was to find a correlation between 2D images and 3D point cloud data; this was 

achieved using a convolutional neural network. 
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Figure 63. Comparisons of actual and predicted surface for the proposed real-time 3D surface scanning method[33]. 

He et al. [146] proposed a technique utilizing machine vision methods in order to capture the 
geometric information of a manufactured object during an Additive Manufacturing process such 

as FDM (Fused Deposition Modelling). More specifically, a non-contact methodology was 

developed to obtain the image and the state of each printed layer and with the aid of image 
processing algorithms, the geometrical characteristics of the part were measured. The results of 

laboratory experiments showed the efficiency of the suggested methodology. 

 
Figure 64. Illustration of the image processing methodology [146]. 

3.5.5.6 2020 

Kwon et al. [147] employed deep neural networks to analyze laser images and assess the quality 

of microstructure in metal sheets. They attempted to correlate the microstructure of the 
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material to the laser power and pixel intensity. The proposed model exhibited as hit rate over 

98.9% in classification. 

3.5.6 AI for augmented reality 

3.5.6.1 2018 

Yin et al. proposed an automatic interaction method using part recognition based on deep 

network for assembly guidance with augmented reality [148]. By recognizing the assembly part, 

the augmented assembly guidance information of the corresponding parts assembly process 
could be triggered in real-time without direct user interaction. Experimental results showed 

precision around 94% on average, at a recognition rate 200ms per image. 

Bernstein et al. suggested reinforcement learning for computer vision and robot navigation 

[149]. This way, a robot could become “visually aware” of its physical environment in a self-

supervised manner, and navigate in space avoiding any obstacles. 

3.5.6.2 2020 

Park et al. [150] proposed a smart and user-centric task assistance method, which combines 

deep learning-based object detection and instance segmentation with wearable AR technology; 

the proposed approach is based on the use of HoloLense [151] and provides more effective 
visual guidance with less cognitive load.  

 

Figure 65. Overview of the proposed wearable AR approach for smart task assistance [150]. 

According to the authors, the 2.5D and 3D replicas can be effectively used for 3D annotation and 
information sharing. The performance of the apparatus was assessed within a realistic 

manufacturing task-related user study involving the inspection and maintenance of a 3D printer. 

The proposed approach did not require a significant user effort, and it was favorable for the 

performance of various tasks in wearable AR. Despite their success, the authors still see room 
for further improvements. Current implementation requires close distance to identify the object 
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and create the required mesh; especially if the object has a reflective surface. Rapid motion is 

still an issue, as it may create blurry and generally distorted images. The matching between the 
physical and virtual object can be improved. 

 

Figure 66. HoloLens [151]. 

Park et al. [152] developed a methodology for mobile augmented reality based on deep learning, 

which targets task assistance using 3D spatial mapping and snapshot-based RGB-D data. The 

proposed method extracted 3D point cloud data corresponding to a real object from snapshot-
based 3D point cloud data. The virtual model was spatially mapped to the real object by the 3D 

position and pose of the real object. The authors claimed that the proposed approach was more 

efficient than the typical AR marker-based approach concerning accuracy and task performance 

as well as qualitative evaluation. 

 

Figure 67. Demonstration of the deep learning-based 3D spatial mapping [152]. 

Rabinovich et al. [153] patented a head-mounted augmented reality device, which incorporated 

a hardware processor programmed to receive different types of sensor data from various 
sensors (e.g., inertial sensors, depth sensing camera, eye imaging camera, microphone, etc.). The 

device could determine a variety of “events”, such as gesture identification, semantic 

segmentation, object detection, lighting detection, simultaneous localization and mapping, etc. 

Wang et al. [154] described a framework for implementing smart manufacturing shop floor 

systems based on the ubiquitous augmented reality. The proposed system made use of data 

sharing between shop floor resources and a sensor network in order to perform real-time 
optimization of the production schedules. Using the proposed framework, the operators were 

able to receive information, instructions and guidance from the experts and manufacturing 
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systems, and to update the systems on task parameters, such as estimated completion times, 

progress and machine status. 

 

Figure 68. Demonstration of ubiquitous augmented reality system [154]. 

Upadhyay et al. [155] proposed a framework combining machine learning for object detection 

and product identification, and augmented reality for an improved user-experience. TensorFlow, 

MobileNets and SSD were used for object detection, while Vuforia was employed for object 
identification. 

Lai et al. [156] developed a smart augmented reality system to provide workers instructions 
during mechanical assembly processes. The system was based on regional convolutional neural 

networks, trained to identify tools using CAD models. The system led to significant reduction of 

assembly times and errors, compared to traditional methods (paper manual instructions). 

 

Figure 69. Augmented reality system using convolutional neural networks to guide workers 
during assembly process [156]. 

3.5.7 AI for quality control 

It has to be noted, that the production of high-quality end-products coupled with minimum cost 

is a high priority manufacturing task. Industry 4.0 has already exhibited its potentials via the 

utilization of core technologies such as AI and Machine Learning in order to reach the 
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abovementioned goals more successfully than ever. Data mining has become a worthwhile 

resource and the acquisition as well the store of data are cheaper compared to previous 
decades. Therefore, through the employment of process-based machine learning algorithms, 

manufacturers could utilize data to enhance product quality and production’s efficiency. 

3.5.7.1 2015 

Lipiński and Majewski [157] implemented an innovative and interactive hybrid system which is 

very important for the development of new effective manufacturing methods, providing 

monitoring and optimization tasks. This approach contains neural networks for forecasting the 

state of the tool and its surface quality. In terms of quality control, the neural models have been 
developed for a subsystem for detection of inaccuracies and optimization of machining 

parameters. 

 

Figure 70. Interactive system for monitoring and optimization using mobile technologies [157]. 

3.5.7.2 2016 

Devarasiddappa et al. [158] developed an ANN model for surface roughness forecasting in a 

wire-cut electrical discharge machining (WEDM) system for an aerospace alloy. In specific, a 
multi-layer feed forward ANN architecture 4-16-1 working on gradient descent back propagation 

algorithm was implemented and was found optimum.  The predictive performance of the ANN 

model was tested using random experimental dataset recording a prediction accuracy of 

93.62%. 
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Figure 71. Wire-cut electrical discharge machining (WEDM) system (a) Schematic arrangement (b) Experimental set 

up [158]. 

Purnomo and Dewi [159] proposed a model for the prediction of manufacturing quality using 

Interval Type-2 Fuzzy Logic (IT2-FL) which is able to handle several ambiguity and uncertainty 

factors in the quality level of production, which can't be modelled using formal mathematical 
models. The proposed approach implements a two-stage forecasting model to predict material, 

process and final product quality in the first leg and manufacturing quality in the second leg. The 

accuracy achieved for each stage reaches 90%, making this assessment model quite promising 
for manufacturing systems. 

3.5.7.3 2017 

Wu et al. [55] introduced a random forest based prognostic technique for predicting the tool’s 
wear in machining operations. The results showed that the utilized algorithms demonstrated 

better performance compared to more classical machine learning methods like feed-forward 

back propagation artificial networks. The inputs for the development of the algorithms were 

collected from cutting forces, vibrations and acoustic emission during the material removal 
process. The authors declared that in future work, they will focus on applying these techniques 

in large-scale and real-time prognosis.  

3.5.7.4 2018 

Scime and Beuth [160] presented a multiscale convolutional neural network for  autonomous 

anomaly detection and classification in laser powder bed diffusion additive manufacturing. The 

proposed neural network could learn the anomalies and other key information at multiple size 

scales. The authors claimed that the proposed network was more efficient than previous 
methodologies. 

In Vafeiadis et al. [161], an early stage-decision support system was utilized to inspect printed 
circuit boards and investigate the inference faults due to the deposition of excess glue on the 

board. More specifically, a pixel-wise vector of the inspected areas was applied coupled with 

various state-of-the art machine learning algorithms to evaluate the efficiency of the proposed 
defect detection system. The results exhibited that Support Vector Machine (SVM) polynomial 

classifier achieved the best performance. 

3.5.7.5 2019 

Lin et al. [162] proposed a cascading convolutional neural network for the detection of defects 
on steel surfaces. Quality control was performed in two stages. First, modified “single shot 

multibox detector model” was used to learn possible defects, and then, deep residual network 
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were employed to classify three types of defects, namely rust, scar, and sponge. The model was 

experimentally assessed using industry datasets and exhibited high precision and recall scores. 

Lin et al. [163] employed a deep convolutional neural network to automatically detect defects on 

LED chips. The authors attempted to introduce a methodology that alleviates the shortcomings 

of existing methods, namely, they tried to reduce complexity of the model, increase robustness, 
and reduce the amount of required resources (financial, labor and time) for chip inspection. The 

introduced “LEDnet” was assessed experimentally and its accuracy was around 95%. The 

simplicity of the network came from the fact that it did not need complex image preprocessing 
nor training from human experts. A major limitation, according to the authors, was that LEDnet 

could identify only specific type of defects, and could not generalize; this limitation could be 

dropped in the future by enhancing the training process with proper image collections. 

 

Figure 72. Concept of automated defect detection on LED chips using CNNs [163]. 

Liu et al. [145] employed deep learning for real-time 3D surface measurement in additive 
manufacturing. Their method consisted of a supervised deep neural network for image analysis. 

The key idea was to find a correlation between 2D images and 3D point cloud data; this was 

achieved using a convolutional neural network. 

 

Figure 73. Real-time 3D surface measurement [145]. (a) Actual surface (hi-res image); (b) 3D scanned point cloud 
data. 

3.5.7.6 2020 

Wiciak-Pikuła et al. [164] employed neural networks to predict the wear of cutting tools during 

milling of aluminum matrix composites. MLPs were employed to associate the wear level of the 

tool with acceleration and cutting forces. This enables timely replacement of the tool in order to 
preserve the quality of the machining. 
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(a) (b) 

Figure 74. Prediction of cutting tool wear level using ANNs; courtesy of [164]. (a) Conceptual description of the 
experimental setup. (b) Structure of the MLP. 

Spruck et al. [165] employed deep neural networks the quality assurance of weld seams. Their 

system was actually a DNN-based classifier, for labeling images obtained by laser triangulation. 

Training of the systems required image assessment by experts. Upon training, classification 

accuracy was over 96%. 

Franciosa et al. [101] employed digital twins targeting quality improvement. The benefits of their 

approach were (i) faster selection of process parameters; (ii) capability to automatically adjust 
process parameters by leveraging stochastic uncertainty; and, (iii) real-time closed-loop control 

with adaptive selection of new set of process parameters.  

Kwon et al. [147] employed deep neural networks to analyze laser images and assess the quality 
of microstructure in metal sheets. The proposed model exhibited as hit rate over 98.9%. The 

authors attempted to fine-tune the architecture of the network and found that performance was 

elevated when the number of layer was increased while decreasing the number of nodes in each 
layer. 

Meiners et al. [166] suggested a two-stage approach based on machine learning to optimize and 
automate the process control in batch production, accounting for including also changes in raw 

material and plant conditions, as well. The proposed configuration went beyond classic control 

systems by not relying on predefined rules and expert experience; instead, it was capable to 

extract interdependencies automatically from existent material, process and quality data. 

Brito et al. [167] employed machine learning in a collaborative robotic environment for quality 

inspection. A robot was responsible for inspection and corrective action in the quality control 
system, supported by an intelligent system that could learn and adapt to the inspected parts. 

The underlying method was reinforcement learning.  

San-Payo et al. [168] developed a classification model to be used in quality control using machine 
learning. The goal was to identify defective products using pictures taken from mobile devices. 

They employed an incremental learning algorithm that enabled learning new classes during the 

classification process. Features were extracted using convolutional neural networks. 
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One of the main defects in manufacturing printed circuits boards is the attachment of the silicon 

die on the substrate. In Dimitriou et al. [169], a diagnosis system was developed in order to 
estimate the volume of the deposited glue before and after the die attachment without human 

intervention. A laser scanning module was applied to obtain a point cloud of the PCB and the 

glue’s volume prediction was achieved via the employment of several AI algorithms. The 

proposed method was validated in operational conditions without interfering with the 
manufacturing procedure.  

 

Figure 75. (a) Laser scanning module; (b) Operational flow of the scanning system [169]. 

3.5.8 AI algorithms for predictive maintenance 

Predictive maintenance is strongly based on (1) monitoring and data gathering, and (2) decision 

making. Following this concept Tiddens et al. [170] reported the following approaches, focused 
on specific successful case studies:  

1. Experience-based maintenance technique for steel manufacturing equipment. 

2. Reliability statistics for aircraft tires. 

3. Stress-based maintenance technique for a military transportation aircraft structure. 

4. Degradation-based maintenance technique for rolling stock components. 

5. Physical model-based maintenance technique for a military helicopter structural part. 



 

108 

3.5.8.1 2015 

Bangalore and Tjernberg [171] introduced an ANN-based monitoring approach using nonlinear 
autoregressive neural network with exogenous input (NARX), to estimate the condition of 

gearbox bearings of wind turbines. This methodology used the Mahalanobis distance (MD) 

metric to detect the presence of an anomaly after the application of the trained ANN to estimate 
the average gearbox bearing temperature. The results demonstrated that the proposed ANN-

based condition monitoring approach can offer effective predictive maintenance by indicating 

severe damage in the components. 

 

Figure 76. Proposed SEMS framework [171] . 

Langone et al. [172] explored the application of the AI method of Least Squares Support Vector 

Machines (LS-SVMs) in effective early fault detection in modern industrial machines. Two 
different approaches were proposed for predictive maintenance in a use case study that regards 

a vertical form seal and fill (VFFS) machine. The first deploys kernel spectral clustering (KSC) for 

real-time machine condition monitoring, whereas the second approach utilizes a nonlinear auto-
regressive model (NAR), to recognize dirt accumulation in the jaws. Based on the results 

produced, LS-SVM can successfully predict mechanical conditions based on sensor data, 

achieving at the same time higher performance than basic methods. 

Abu-Samah et al. [173] presented a methodology based on Bayesian Networks for failure 

prediction, using event-driven contextual data as predictors. This approach explores the 

extraction of rules and patterns to forecast potential failure occurrences. This is a 4-step 
methodology where the first two steps regard the development of the Bayesian Network, that 

is, the identification of failure predictors and data pre-processing along with BN learning and 

optimization. The last two steps involve pattern extraction for all failures and the computation 

of the predictability index in terms of prediction accuracy, precision and lead time. This study 
offers promising results for prediction and can be extended by utilizing machine learning 

algorithms for rules extraction. 
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Figure 77. Methodology for failure detection before its occurrence [173]. 

Confalonieri et al. [174] developed a framework comprised of hardware, software and 

methodological interventions to design an innovative Decision Support System (DSS) for early 

identification of manufacturing problems. The data provided by sensors are processed by an 

ANN-based model which decides for preventive maintenance interventions. The proposed 
model consists of three main modules, responsible for data collection, status assessment, 

optimization and AI learning. The results produced demonstrate 95% of accuracy in preventively 

recognize an anomaly, further fostering a maintenance operation.   

 

Figure 78. DSS high-level architecture and functionalities [174]. 
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3.5.8.2 2016 

Wu et al. [175] proposed a novel approach in the field of mechanical failure predictive 
maintenance, concerning machinery prognostics upon utilization of a cloud-based parallel 

machine learning algorithm. This study’s main objective was to investigate the performance of 

the Random Forest (RF) algorithm and its parallel implementation, using the MapReduce 
framework. From the results, it emerged that the utilization of random forests produces very 

accurate predictions, while a notable speedup was demonstrated through the building of a large 

number of decision trees. 

Krenek et al. [176] performed a review of ANNs and their applications in predictive maintenance 

and more specifically in the cases of electrical appliances early fault detection, mechanical 

damage and crack detection, detection of faults on pneumatic systems as well as robotic 
manipulator monitoring. The most common architecture utilized is the Multi-Layer Perceptron 

ANN (MLP-ANN) due to its simplicity, thus making it suitable for simple classification of faults. 

The results achieved by MLP design are 95%.  

Another review study was conducted as well by Patwardhan et al. [177] regarding predictive 

maintenance through big data. The detection of anomalies in industry relies on large amount of 

real-time data in which data processing techniques are applied, fostering the application of 
preventive maintenance and the overall optimization of industrial processes.  

Rødseth and Schjølberg [178] implemented a structured approach in the domain of predictive 

maintenance that is based on the Profit Loss Indicator (PLI) and this approach was applied in the 
manufacturing industry. Since maintenance has a significant contribution towards sustainable 

manufacturing, a key performance indicator such as PLI can help in this direction. In particular, 

it entails the ability to assess the status of the green aspect in manufacturing by calculating 
unintended time losses and waste, further improving availability and minimizing the operational 

costs. 

 

Figure 79. Structured approach for data driven predictive maintenance [178]. 
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Ben Said et al. [179] pay attention to the Semiconductor Industry being one of the fastest 

growing and important manufacturing domains. They present a methodology which utilizes 
Bayesian Networks (BN) for making decisions about effective maintenance procedure over 

potential unscheduled breakdowns. Although the proposed BN-based model does not allow 

real-time monitoring, it is quite promising and supportive to expert’s knowledge. With a 49% of 

gain in productive time from long failure durations, this methodology can help SI in improving 
production capacities. 

Ali et al. [180] provided a review concerning the combination of an acoustic emission technique 
with AI methods as regards machinery condition monitoring and fault detection. Acoustic 

emission signals are used for gear and bearing condition monitoring and fault detection which 

is the main concern of this approach and its efficiency. For preventing machinery performance 

degradation, malfunction or catastrophic failures, certain reliable techniques for health 
condition monitoring and failure prognosis are required. AI methods which have been widely 

used for fault detection of machine tool were utilized in this approach. These AI techniques 

including ANN, SVM and genetic algorithms (GAs), were employed for proper fault diagnosis, 
classification and localization. 

3.5.8.3 2017 

Li et al. [181] suggested a framework for predictive maintenance within the scope of Industry 
4.0. The proposed framework consisted of five discrete modules: sensor selection and data 

acquisition, data preprocessing, data mining, decision support, and maintenance 

implementation. 

3.5.8.4 2018 

Wang and Wang [182] identified a critical issue in predictive maintenance: the features fed into 

AI algorithms are typically selected manually, relying on the experience of process engineers 

who understand the physical and mechanical processes. Such an approach suffers from 
different kinds of bias and is very labor intensive. Moreover, the selected features are specific to 

a particular learning task, and cannot be easily reused in a different task. To overcome these 

disadvantages, they have developed a general framework for predictive maintenance based on 

deep learning (Figure 80). This framework targets automatic feature extraction from the raw data 
that are most suitable for solving a particular learning task; this can be very beneficial for 

predictive maintenance in terms of effort, cost and delay. 
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Figure 80. A framework of predictive maintenance based on deep learning [182]. 

3.5.8.5 2019 

Cavalho et al. performed a systematic review of machine learning algorithms targeting predictive 

maintenance [3].  

Chuang et al. [183] employed AI combined with edge devices and IoT to perform data-driven 

predictive maintenance; this framework is conceptually shown in Figure 81. The authors used an 

edge device (Raspberry Pi) to gather data from multiple distributed sensors, and process it and 

determine the health status of an experimental platform using deep learning. The developed 
technique was efficient and quite accurate; therefore, it is a good candidate for real-world 

applications. 

 

Figure 81. Overview of predictive maintenance framework, involving edge devices, IoT, and AI [183]. 
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A method for predicting future failures of a motor using neural networks was developed in [184]. 

The experimental setup consisted of a cooling fan coupled with several magnets simulating 
typical motor vibrations. The measurements were conducted via an accelerometer in a 

laboratory environment and the introduced model showed that the employment of neural 

networks in performing predictive tasks looks promising. 

 

Figure 82. Hardware setup for simulating vibration in motors [184]. 

Pinto and Cerquitelli [185] used artificial intelligence techniques like KNN, RT, CNN in order to 

develop a fault detection module that is able to predict the remaining life for industrial robots. 

The tuning of the model’s parameters was achieved via the Grid Search algorithm. Furthermore, 
the methodology was validated on a real case scenario with Comau industrial robots and the 

outcomes were satisfied.  

3.5.8.6 2020 

Çınar et al. suggested deep learning for predictive maintenance within Industry 4.0 [186]. The 

authors explored various AI approaches, including artificial neural networks, support vector 

machine, decision tree, random forest, logistic regression, extreme gradient boosted trees, 

gradient boosted machines, linear regression, symbolic regression, etc. 
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Figure 83. Framework for deep learning-based predictive maintenance [186]. 

Daniyan et al. raise the concept of a learning factory which involves the integration of academic 
learning environment into the shop maintenance floor of a railcar industry [187]. The predictive 

module employs AI, namely ANNs, to correlate temperature variations to the remaining useful 

life of a railcar (wheel-bearing health status). 

3.5.9 AI for Zero-defect manufacturing 

All previous concepts and technologies are envisioned to merge into unified frameworks 

towards zero-defect manufacturing. The SOA frameworks identified in the literature are listed in 

the following paragraphs. 

Concerning zero-defect detection and monitoring, there are many and interesting applications 

and methodologies proposed to tackle the ongoing challenges in this field. The authors in 

[188] employed various configurations of deep convolutional networks and discuss how 
different parameter settings affected the accuracy of defect detection results. Additionally, the 

authors in [189] examined the problem of induction motor fault diagnosis utilizing a 

convolutional discriminative feature learning method. A back-propagation (BP)-based neural 

network was used to learn local filters capturing discriminative information and then, a feed-
forward convolutional pooling architecture was built to extract final features through these local 

filters. 

In [190], a convolutional neural network, based on LeNet-5, was proposed to extract the features 

of the converted 2-D images and eliminate the effect of handcrafted features in fault diagnosis. 

CNNs have been also applied for machine parameter prediction in industry, to attain best quality 

for a specific industrial product [191]. Tello et al. extended the previously proposed randomized 
general regression network (RGRN) model into a new deep-structured ML technique for defect 

detection and classification of diverse defect patterns providing a remarkable overall 

performance [192]. 
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Moreover, the authors in [193] introduced a methodology based on hierarchical convolutional 

neural networks (HCNN) characterized by two main features: the fault pattern and fault severity. 
The classifiers in each level of the diagnosis network were trained in a single training stage. 

HCNN showed outstanding performance against traditional two-layer hierarchical fault 

diagnosis network and other machine learning techniques. 

In another interesting case study, advanced CNNs found extended applicability in automatic 

fault diagnosis by estimating accurately the volume of glue deposits on Printed Circuit Boards 

(PCB) [169]. The proposed three-dimensional convolutional neural network (3D-CNN) 
architecture was called RNet and outperformed other deep learning approaches. 

Another promising framework is presented in [194] where a deep learning method was 

implemented to achieve high performance on machine fault diagnosis. Transfer learning was 
incorporated in the training phase of the proposed DL architectures, producing an improved 

model training process, for the examined classification problem. Sensor data were used as input 

and were converted to images by conducting a wavelet transformation. 

 

 

Figure 84. Structure of HCNN and its training method [193]. 

The study in [195] investigated a technique to minimize the number of defects during quality 

control procedures in a fluid dispensing system. The authors employed real time data acquisition 
to predict the formation of droplets as well as to estimate the failed products on an industrial 

experiment. The proposed methodology utilizes the Principle Component Analysis (PCA) in order 

to detect faults on the quantity of the dispended fluid. 

While DL has certainly fostered progress in fault diagnosis of one-dimensional (1-D) and two-

dimensional (2-D) signals, it has not found wide application in processing 3-D sensory from 
industrial shopfloors. Recently, Dimitriou et al. [196] developed a method where deep neural 

networks were employed to simulate changes in the 3D geometrical shapes of inspected parts 

in a batch taking into account previous measurements of the production. The geometric 

variations were modelled via 3D Convolutional Neural Networks, hence forthcoming actions 
leading to defects could be predicted. The validation of the proposed technique was established 

on a microelectronic use-case and the results showed that the suggested technique can 

efficiently predict defects during the manufacturing process. 



 

116 

 

Figure 85. The 3D-CNN architecture of the simulation model [196]. 

The need for the development of a reliable quality control system that can lead tozero defect 

manufacturing process is urgent especially in pharmaceutical industry. Therefore, Dengler et al. 
[197] presented a system that is based on machine learning algorithms such as Decision Trees, 

SVM and CNN to identify multiple types of errors during the assembly procedure of medical 

products. The methodology was tested in two real use cases and the results exhibited that the 

proposed technique is capable of detecting all the defective products but also reduces the false 
rejections on a sufficient percentage.  

3.5.10 Virtualization in smart manufacturing   

The fourth industrial revolution (Industry 4.0) is well underway and represents a transformative 

practice in the way many industry verticals conduct their business. It is based on the abundant 

use of the Internet of Things (IoT) along with Cyber-Physical Systems (CPS) that are intertwined 
in the whole industrial process. Furthermore, the explosion of big data generated by these 

systems has entailed the evolvement of key technologies such as Artificial Intelligence, Computer 

Vision and Extended Reality, humans (i.e., workers) that seem to constitute a big potential for 
the factories performance. Research efforts for enhancing human performance in the shop floor 

are already in place coping to maintain competitiveness, especially considering the ever-

increasing reliance on automation. Such efforts are paving the ground for a new paradigm shift 

that could steer the human-cyber-physical systems symbiosis towards a new industrial 
revolution. The combination of technologies such as Augmented Reality (AR) for providing 

computer-aided support with the rapid decision making provided by Artificial Intelligence (AI), as 

well as the advanced systems’ perception and monitoring that can be achieved through the 
advances in Computer Vision (CV), act as a key enabler for putting the worker at the center of 

the loop, thus becoming an integral part of the smart manufacturing of tomorrow. 

In combination with AI and IoT, AR proves to be a very substantial facet of the smart 
manufacturing process able to elevate the capabilities of workers and provide them with 

sufficient stimulation pertaining to a production issue, assisting them in resolving it and thus 

improving the adhering processes, even before they are carried out [198]. AR enables workers 
to advance up the skill-chain, leveraging on the timely delivery of contextual knowledge and 
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information about carrying out a specific task, delivering a significant boost in workers’ 

situational awareness and pointing to the potential for efficiency increase in almost all areas of 
industrial application [199]. The topics of assembly, maintenance, product design, training and 

learning, are the most common research fields where AR approaches have been suggested, 

while other topics such as safety, ergonomics or remote collaboration have recently emerged as 

new foci for research [200].  

An illustrative example of how AR can facilitate useful guidance for products’ assembly and 

prototyping in real environments is presented in [201]. The work discusses an AR-aided system 
that makes available to the users the option to select and combine different virtual product parts 

working in the real assembly environment, integrating product with workplace design and 

planning activities, to improve the efficiency and quality of both in assembly operations.  

AR represents another key technological enabler entailed by relevant approaches in smart 

manufacturing, highlighting the necessity for the workers to keep their hands free, without 

needing to hold any type of displaying devices such as tablets, to be able to continue operating 
without any obstacles imposed. Such a hands-free approach is presented in [202] regarding a 

system for constraint analysis able to perceive and interpret the users’ manual assembly of 

virtual components without the need for supporting CAD information. In this case, the users are 

able to use their hands for manipulating the parts as they would do at the shop floor.   

AR also plays an important role in human-robot cooperation, which is mandatory in industrial 

spaces. Toward supporting human-robot interaction, [203] introduces an AR system that is able 
to monitor assembly / disassembly operations conducted by robots and allows the human 

operators to intervene when necessary (e.g., in the occurrence of errors), thus enabling the 

development of a cooperative and efficient assembly/disassembly strategy. Another aspect that 
AR facilitates safe and efficient cooperation of humans with robots in industry, is the assistance 

that can be provided through instructions and notifications. In [204] an AR solution is presented 

supporting workers by providing instructions and production notifications, in their field of view, 

while they are operating in cooperation with robotic machinery. Furthermore, as explained in 
[205,206], such systems can also reinforce the “safety feeling” of the workers who work close to 

large industrial machineries by visually alerting them when a potential hazardous situations 

might occur and preventing operations to be executed if they are dangerous for them.  

Another field of application for AR in manufacturing is that of monitoring and timely indicating 

of potential defects that might occur in the production. Such a system is presented in [207], 

facilitating the monitoring of the manufacturing process of a product and the possibility for 
comparing it real-time with its CAD counterpart in order to identify potential defects. A similar 

approach that is detailed in [208] introduces a framework, based on the concept of Digital Twins, 

for providing data and information to the workers using AR, so as to perform efficient decision-
making and higher level machine control. In such cases the system notifies the employee and 

provides them with visual cues pertaining to any identified flaws. Going one step further, the 

authors in [209] discuss a method that combines the capabilities provided by CV, AI and AR for 

monitoring the manufacturing production and thus assisting workers to productive 
maintenance. They rely their methods on well-established quality management methods (Lean, 
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Total Productive Maintenance, and Overall Equipment Efficiency) and explore how they can be 

applied in an autonomous fashion with the use of the reported technologies. They have applied 
their method in a mass production process of a company and the first results were very 

optimistic since an important scrap reduction has been observed.  

As already explained, the AR potential in the manufacturing process is well established, providing 
opportunities for leveraging several different aspects such as the configuration and 

maintenance of devices ([210,211]) machines and systems [212], the safety of the employees in 

the shop floor [213], the personalization of the products [214], training [215], and even worker 
motivation via gamification [216]. Of course, several aspects are still open and should be taken 

into account so that AR applications can be widely used in the manufacturing domain, such as 

improvements in accuracy, performance and price, the development of efficient and suitable UIs 

able to provide intuitive and non-blocking interaction of human with the machineries, as well as 
the existence of fast and stable internet-based collaborative infrastructures [198]. Furthermore, 

training the current industrial workforce in utilizing and accepting wearable AR technology as 

part of their everyday work is of paramount importance to facilitate wide-spread adoption, 
especially considering the unfamiliarity of workers with head-mounted technology due to a lack 

of hands-on experience with real-life tools [217]. 

In [218] the authors discuss a detailed taxonomy yielded by the way that AR is being deployed 
in smart manufacturing. They classify the studied works in four main categories, which pertain 

to the devices used for supporting AR, the manufacturing processes that the AR systems are 

deployed, the basic objective that the systems aim to address and the type of methodological 
approach that is followed to obtain the objectives. The big share of the manufacturing 

operations that the AR systems have been deployed appertains to maintenance, assembly and 

planning, while only a small percentage corresponds to training, monitoring and quality control.  

The observed low focus on quality control can be explained by the fact that so far this aspect has 
been faced under the rationale that it doesn’t depend on human decisions; instead, a machine-

based decision process is considered adequate to address this need.  

Today, this mentality regarding the employment of autonomous systems in everyday life has 

been totally reconsidered under the human-centered perspectives of reliability, safety and 

trustworthiness [219,220]. To that end, putting the human in the loop regarding the decision 

processes based on AI systems has started to become mainstream, not only because in this way 
the ethical concerns about autonomous system use are better addressed, but mainly because it 

seems that the human-machine symbiosis can generate superior results. A necessary modality 

for such an approach is the means of human-machine interaction, which can be facilitated using 
wearable AR technology. In this respect, manufacturing processes that have been so far relied 

on the decision-making efficiency of autonomous systems, such as quality control and zero 

defect, can now be subjected to a human-centric approach, involving employees operating at 

the shop floor able to instantly interact, in order to efficiently and timely resolve production 
problems. This concept is discussed in [221]. Specifically, a system for automatic defect detection 

of car body surfaces is introduced providing AR UIs to the employees through a Head-up Display 

(HUD), in order to interactively facilitate the quality control of the products. An AR based 



 

119 

collaborative system connecting the worker with data originating from the industrial IOT and the 

suggestions from the AI, is illustrated in [222]. Through the system, human input in decision 
making is supported, as for example in troubleshooting activities in which is necessary to have 

information collected by the human to select the right procedure to execute. The different 

collaboration modalities that are provided for addressing these manufacturing operations 

include cases when the user should manually follow a sequence of predefined steps, or 
situations that entail the synergy of the employee with the system (e.g., machineries and 

analytics services), or finally cases that autonomous system actions should not be taken into 

consideration and the worker should take decisions on their own.  

Today, the need for laying the foundations for the efficient human-machine symbiosis in smart 

manufacturing and especially in the domain of quality management and zero defect, is becoming 

imperative. Key enabler technologies for such an approach have already become mature 
enough, so as to aim at developing intelligent autonomous systems that actively cooperate with 

humans for the optimal decision making and effective production problem resolution. As already 

discussed, AR can constitute the means for facilitating this mutual relationship between the 
systems and human, in an intuitive and effective manner. In the context of OPTIMAI, 

opportunities for defect analysis visualization and interaction will be investigated. Using 

wearable HMDs, coupled with intelligent multimodal natural interaction, workers at the shop-

floor will be able to actively address production defects, through an ecosystem that will ensure 
the seamless confluence of diverse computing platforms, unobtrusive monitoring and sensing 

(e.g., via computer vision), and producing advanced, immersive and tangible visual 

representations of defect information.  Furthermore, OPTIMAI will focus on a context aware 
adaptive interaction framework, based on a customizable decision-making engine, to support 

personalized interaction with wearable AR solutions for increasing worker awareness in 

manufacturing scenarios. 
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4 Ethics in AI for industry 

This chapter discusses AI ethics in the industry context. It is organized as follows: Section 

“Overview of AI ethics in industry” introduces a connection between AI ethics and industry, 
opportunities and challenges raised by AI, and provides a brief overview of ethical frameworks 

and guidelines relevant for industry and the OPTIMAI project. Section “Facing the 

implementation of AI ethics in OPTIMAI” focuses on the implementation of AI ethics in 
OPTIMAI, including monitoring strategies and actions. Section “Responsible research and 

innovation in industry” places AI ethics in a broader context of companies’ responsibility 

towards society, corporate social responsibility (CSR) and responsible research and innovation 

(RRI). Last, Section “Automation, digitalization, and meaningful work” explores the 
relationship between companies as employers and employees, as their internal stakeholders, by 

diving into questions of automation, digitalisation, and meaningful work. 

4.1 Overview of AI ethics in industry 

The convergence between Web 4.0, Industry 4.0 and the Internet of Things (i) brings about new 
regulatory challenges for organisational data, responsibility, data protection, trade restrictions, 

agreements, standards, contract models, supervision, surety, monitoring and control, and (ii) 

tends to create and stabilise new regulatory (or socio-legal) ecosystems in a huge array of 
technologies adapted to the manufactures of a variety of new industry sectors, from automated 

vehicles to intelligent welding systems.   

Lu [223] has pointed out that the integration of things, data, services and people—i.e. the 

convergence we are talking about—requires an enhanced interoperability (operational, 

systemic, technical and semantic) between: (i) Smart factories and manufacturing, (ii) smart 

products, (iii) smart buildings, (iv) smart homes, (v) smart facilities, (vi) smart transportation, (vii) 
smart grids, (viii) and smart cities. This is drawing the general interoperable informational space 

that the convergence between Industry 4.0, the Internet of Things (IoT) and the Web of Linked 

Data (WoLD) is creating in urban environments, everyday life, and in the workplace. 

The potential benefits of AI for industry are abundant. PwC (2019) estimates that GDP could be 

up to 14% higher in 2030 as a result of AI, the equivalent of an additional $15.7 trillion, making it 

the biggest commercial opportunity in today’s fast changing economy [224]. However, there are 
considerable ethical and legal challenges for the development and use of AI. Therefore, in recent 

years, public sector, research institutions and private companies have issued various principles 

and guidelines for ethical AI. A number of initiatives aimed to capture this proliferation and map 
the landscape of such frameworks. For instance, the EU-funded project SHERPA (Shaping the 
Ethical Dimensions of Smart Information Systems: A European Perspective) found over 70 

relevant documents [225]. AlgorithmWatch AI Ethics Guidelines Global Inventory lists more than 

80 documents, including industry related guidelines developed by Google, IBM and Microsoft 
[226]. The EU-funded SIENNA project (Stakeholder-informed ethics for new technologies with 
high socio-economic and human rights impact) provides an overview of international and 

national codes and guidelines with a particular focus on ethical guidelines by professional 
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organisations, ethics advisory groups, and research ethics committees for Artificial Intelligence 

and Robotics (AI&R) [227]. While there is a multiplicity of such frameworks, codes and guidelines, 
it is worth mentioning a few particularly relevant for industry and the OPTIMAI project (Note: a 

comprehensive analysis of the ethical and legal framework for the OPTIMAI project is part of task 

T9.1 and deliverable D9.1).  

The IEEE (Institute of Electrical and Electronics Engineers) Global Initiative on Ethics of 

Autonomous and Intelligent Systems, called ‘Ethically Aligned Design’ was officially launched in 

April 2016 as a collective program of the IEEE, the world’s largest technical professional 
organization (IEEE, 2019) [228]. It identified over one hundred and twenty key issues, with several 

founding values and principles to be applied “to all types of autonomous and intelligent systems 

(A/IS), regardless of whether they are physical robots, such as care robots or driverless cars, or 

software systems, such as medical diagnosis systems, intelligent personal assistants, or 
algorithmic chat bots, in real, virtual, contextual, and mixed-reality environments” (IIIE 2019, 17): 

(i) Human Rights; (ii) Well-being; (iii) Data Agency; (iv) Effectiveness; (v) Transparency; (vi) 

Accountability; (vii) Awareness of misuse; and, (viii) Competence. 

There are currently 14 approved IEEE Standards development activities in the IEEE P7000 Series, 

incorporating transparency, data access and control, algorithmic bias, robotic nudging, and well-

being. Adamson and Chatila have offered a complete table of 52 IEEE ethical groups, practices, 
and trends [229]. These standards keep the difference between human consciousness and 

computer processing.  

Other remarkable initiatives on Ethics are The Asilomar Principles for the Future of Artificial 
Intelligence [230], The OnLife Manifesto [231], the Manifesto for conscientious design of hybrid 
online social systems, and Responsible Artificial Intelligence [232]. Stemming from these works, 
we can point out several points that can be added to the IEEE principles to flesh them out, leading 

to the same direction: (i) The importance of explainability (or explicability) to steer clear of 

opaque decisions [233]; (ii) The emergence of machine ethics, or “how a machine could act 

ethically in an autonomous fashion” [234], and (iii) The development of bias-averse strategies to 
minimise negative impacts in society, avoiding the risks of harming vulnerable people.  

In the context of OPTIMAI, we seek to apply commonly recognised principles and guidelines that 
are operational and directly useful in development practices. The work published by the High-

Level Expert Group on Artificial Intelligence of the European Commission (AI HLEG), “Ethics 

Guidelines for Trustworthy AI” [235] will be followed. According to AI HLEG there are four high-

level ethical principles: i) Human autonomy; ii) Prevention of harms; iii) Fairness; and, v) 
Explicability. These principles are turned into specific requirements for their practical 

implementation. These requirements are: i) Human agency and oversight; ii) Technical 

robustness and safety; iii) Privacy and data governance; iv) Transparency; v) Diversity, non-
discrimination and fairness; vi) Environmental and societal well-being; and, vii) Accountability.  

This ethics-based approach will be used to operationalize AI ethical principles into a specific 

context of application -AI solutions in and for Industry- which takes into account not only 
technological aspects of Industrial AI, but also other industrial requirements such as value 
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creation, human-AI-interaction, ethical and regulatory aspects [236].  Moreover, such an ethics-

based approach faces the challenges and limitations of a principled approach to AI Ethics (e.g., 
common aims and fiduciary duties, professional history and norms; proven methods to translate 

principles into practice, and robust legal and professional accountability mechanisms) as 

stressed by Brent Mittelstadt [237]. Therefore, we will derive from sets of guidelines for 

operationalisation of ethics by design for developers and for users of smart information created 
by the SHERPA project [238], and further developed by the SIENNA project [239]. Following these 

guidelines, we consider the responsible and ethical development of AI to be the outcome of 

three factors: (i) Responsible development models and methods for the system; (ii) Responsible 
corporate structure and policy in AI and big data industry; (iii) Support for responsible 
development by society (e.g., by governmental institutions, educational institutions, professional 
organisations, clients) [238]. 

The SHERPA project provides an effective strategy for and useful example of the 

operationalisation of ethical principles in both the design and use of AI and Big Data systems. 

SHERPA researchers translate ethical concerns into the existing software development and 
management processes in their Guidelines for the Ethical Development of AI and Big Data 

Systems: An Ethics by Design Approach, and Guidelines for the Ethical Use of AI and Big Data 

Systems.   

For the design of AI and Big Data systems, SHERPA researchers analyse the Agile model, which 

is a dynamic one encouraging stakeholder collaboration, and note the process “…allows 

integration of changing demands from ethical requirements (e.g., relative to new functionality).” 
The Agile process consists of six phases including; Requirement Gathering; Planning & Designing; 

Development; Testing; and Evaluation. 

SHERPA researchers also describe how to integrate ethical concerns into the CRISP-DM model, 

which consists of six phases which are sequential but can be iterative, including; Business 

Understanding; Data Understanding; Data Preparation; Modelling; Evaluation; and Deployment. 

Similar to their approach of mapping ethical requirements into existing software development 

processes, in SHERPA’s Guidelines for the Ethical Use of AI and Big Data Systems the researchers 

map ethical requirements onto management processes. Their example is COBIT, a five objective 
model for IT governance in organisations consisting of the following points that [240]: 

1. jointly ensures that there is an overall governance framework for IT in place that aligns 
IT management strategy with overall corporate strategy and objectives; 

2. ensures effective oversight of IT-related processes that ensures adequate and sufficient 
business and IT-related resources; 

3. accounts for strategic risks; 

4. ensures engagement of stakeholders, and 

5. ensures that IT services are delivered efficiently and effectively 
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The requirements presented in this document ensure that ethical concerns are robustly 

incorporated or mainstreamed into the governance and management of technology in 
organisations with the appropriate roles, codes, programmes, and communication processes 

established to effectively accommodate the ethical use of AI and Big Data systems. 

4.2 Facing the implementation of AI ethics in OPTIMAI 

This section follows the AI ethical principles established by the High-Level Expert Group on 
Artificial Intelligence (AI HLEG) [241], which have been adapted to the context of OPTIMAI 

research activities from an action-guiding perspective. This approach allows us to glimpse which 

ethical challenges will be faced in OPTIMAI and also points out specific monitoring strategies and 

actions that will be implemented in order to put such AI ethical principles into practice. 

4.2.1 Human autonomy 

The principle of human autonomy implies that AI-enabled technologies should be designed and 

deployed in a way that respects and protects fundamental rights and ensures human agency 

and oversight. 

AI-enabled technologies must ensure human dignity. In the workplace, the objectification and 

dehumanisation of employees should be avoided. Employees should be treated as self-

determined subjects whose physical and mental health must be protected. Worker’s dignity 
might also be undermined by the consequences that the deployment of AI systems in the 

workplace may have on the de-skilling of the labour force and the meaning of work. 

Individual’s freedom can be accomplished with mitigation measures against coercion, threats to 

mental health (e.g., pressure, stress) and surveillance. Ensuring genuine voluntariness is key. 

Given the power imbalance in the workplace, employees may feel coerced to use AI systems in 

the workplace or may fear detrimental consequences if they refuse to adopt them. The use of AI 
systems in the workplace may also lead to an advanced system of surveillance and monitoring 

to which employees may be subject [242]. Surveillance may cause “chilling effects” on employees 

and may also negatively impact their freedom, autonomy, and privacy. Therefore, legal (including 
human rights and privacy), social and ethical impact assessments must be conducted to strike 

the right balance between the intended benefits of the deployment of technology in the 

workplace and the possible negative consequences for employees’ ethical values and 

fundamental rights [243]. 

To ensure human agency, employees should be able to make informed autonomous decisions 

regarding AI systems outcomes and have the skills to assess and challenge the system. 
Therefore, training sessions are encouraged to ensure that workers have the knowledge to 

understand how the system works and how to interact with it [244].  

The purpose of human oversight is to prevent or minimise the potential risks of AI-enabled 
technologies. Meaningful human control can only be achieved if human-centric design principles 

and appropriate human-machine interfaces are embedded into the technologies. Additional 

measures should be implemented to ensure that users have the expertise, necessary 
competencies, and authority to exercise human control effectively, e.g., training sessions that 
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enable the understanding of the capacity and limitations of the deployed technology, awareness 

of automation bias [245]. 

4.2.2 Prevention of harms 

The principle of prevention of harms means that AI-enabled technologies should not cause harm 
nor have detrimental consequences for individuals. In the workplace, this implies that 

employees’ dignity must be respected, and their mental and physical integrity protected. 

Particular emphasis must be placed on the potential harms that technology can cause or 
exacerbate to workers, who are considered by the HLEG vulnerable people given the power 

imbalance and information asymmetries with employers. To minimise the impact of AI-enabled 

technologies on workers, a participatory approach could be adopted where workers are involved 

in the development and deployment of the technology [246]. 

The potential harms that can be caused by AI-enabled technologies also require addressing: i) 

the technical robustness and safety of the technology; ii) privacy and data governance concerns; 
and iii) societal and environmental well-being.   

Firstly, AI-enabled technologies must be robust, resilient, secure, safe, accurate, reliable and 
reproducible.  Technical robustness and resilience should be ensured to prevent the exploitation 

of vulnerabilities by third parties and misuse [247]. Therefore, the existence of potential security 

risks must be evaluated at the design, development and deployment phases, and mitigation 

measures must be implemented in accordance with the magnitude and likelihood of the risks. 
Security and safety measures should also be put in place to enhance workers safety and prevent 

detrimental consequences. To this end, a fallback plan can serve to ensure safety in case of a 

system failure. AI-enabled technologies must also be accurate. Accuracy rates should be 
particularly high when such systems can directly affect individuals, as is the case with workers 

whose integrity may be compromised. Accuracy must be monitored on an ongoing basis and 

procedures to mitigate and correct potential risks must be implemented. Additionally, workers 

need to trust the system to use it, therefore reliability and reproducibility are key aspects to 
ensure the adoption of the technology among workers [248]. 

Secondly, the prevention of harms to privacy and data protection is paramount given the 
potential risks that AI-enabled technologies pose to these fundamental rights through the 

processing of massive amounts of personal data. These rights can also be at stake because 

personal information can be inferred from non-personal data [249]. Respect for workers’ right 

to privacy and data protection must be ensured by complying with the GDPR and by aligning 
with existing standards or widely adopted protocols. Importantly, in IoT environments, it is 

particularly crucial to clarify data ownership, the roles of data controllers and processors and 

access to data [250]. Oversight mechanisms must also be put in place to ensure data quality (e.g. 
representativeness in the dataset) and integrity that minimises the risks of using biased, 

inaccurate or compromised datasets. Therefore, processes and datasets must be scrutinised 

and documented throughout the system’s lifecycle. The ubiquity of IoT raises particular privacy 

concerns that require workers’ genuine voluntariness which can only be ensured through 
stringent consent procedures and comprehensive and easily readable informed consent forms 

[248]. 
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Lastly, the use of AI-enabled technologies should aim at benefitting society and the environment. 

AI systems must be designed, developed and deployed with sustainability and environmental 
friendliness in mind. Therefore, the ecological impact of the system should be evaluated 

throughout the system’s lifecycle and measures to reduce such impact should be encouraged. 

The social impact of the system should be regularly assessed both at the individual and societal 

level. For instance, the evaluation of the impact of the technology on workers should cover 
physical and mental health issues, non-discrimination, de-skilling of the workforce, among 

others. As for the societal considerations, the impact on the job market and the societal 

consequences it may entail should be addressed [244]. 

4.2.3 Fairness 

The principle of fairness entails equality, diversity and the prevention of discrimination and 
stigmatisation against individuals and groups. Fairness can be achieved by i) promoting diversity, 

inclusion and non-discrimination; ii) fostering societal and environmental well-being while 

reducing potential harms; and, iii) adopting accountability measures. 

Firstly, diversity and non-discrimination can be enhanced with oversight processes that identify, 

examine, address and test biases in the datasets and at the design and development phases 
[251]. From a design perspective, technology should be understandable and accessible to all 

workers regardless of their age, abilities or characteristics. In this regard, the participation of 

relevant stakeholders with diverse backgrounds and viewpoints at the different stages is highly 

encouraged to ensure that diversity is embedded into the system [252]. In the workplace, for 
instance, impacted workers and their representatives can be engaged in such discussions. 

Secondly, as pointed out above, AI-enabled technologies should be designed to strive for social 
and environmental well-being. Concerning the principle of fairness, the social impact of the 

system on workers should be evaluated in terms of causing or exacerbating discrimination, 

stigmatisation or marginalisation. 

Lastly, accountability requires the implementation of appropriate technical and organisational 

measures to report the system’s performance and provide effective remedy and redress to the 

extent possible. Such measures include the assessment of design processes, the underlying 
technology and the data sets used, which allows for the auditability of the system.  Auditability 

involves reporting the negative impacts of the system, identifying appropriate mitigation 

measures and feeding them into the system [243]. These negative impacts can be identified and 

assessed through comprehensive impact assessments that must be conducted regularly  [253]. 
Accountability also includes providing explanations of the system’s outcomes and the ability to 

seek redress. To this end, internal communication channels can be established for workers to 

submit their complaints, without risk of retaliation, and seek redress for harms caused by AI 
systems [252]. 

4.2.4 Explicability 

The principle of explicability requires transparency of the system – including the datasets, the 

inner workings of the system and the business model – which ultimately enables human 

oversight [243]. For systems to be transparent, traceability measures must be implemented.  
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This implies that datasets and the technology that underlies the system should be documented, 

e.g. the methods used for designing and developing the system, the methods used to test and 
validate it and the outcomes of the system. Given that traceability allows for the identification of 

the reasons behind systems’ outcomes, it enables explainability. Explainability means the ability 

to explain the outcomes made by the system intelligibly [247]. To this end, the rationale behind 

a system’s outcome should be understood and traced by humans. Crucially, Ifeoma Ajunwa 
(2021) argues that lack of transparency and explainability subjugate workers and deprive them 

of justice [254]. Therefore, if a system’s outcomes cause harm to workers, explanations of how 

the system arrived at it should be provided to the worker in plain language. In this regard, 
communication is crucial since workers must be aware that they are interacting with an AI 

system in the first place in order to be able to request an explanation. Consequently, workers 

must be informed in a clear and understandable manner about their interaction with an AI 

system, how the system works and its purpose, as well as its capabilities and limitations [244]. 

4.3 Responsible research and innovation in industry 

It is crucial to emphasise that AI ethics in the industry context is related to broader concepts of 

corporate social responsibility (CSR), business ethics and responsible business conduct (RBC), 

whereby companies integrate social, environmental, ethical, consumer and human rights 
concerns into their business strategy and operations and in their interaction with stakeholders 

[255]. In other words, it is “the responsibility of enterprises for their impacts on society” [256]. 

CSR tools include hard law and soft law instruments. Hard law involves binding legal instruments, 
such as those related to human rights: Universal Declaration on Human Rights, Charter of 

Fundamental Rights of the European Union and the European Convention on Human Rights. 

Soft law instruments have mainly a voluntary and self-regulatory character and include 

standards, principles, codes of conduct, and reporting initiatives to provide quantitative data on 
non-financial (societal and environmental) responsibility performances [257]. Soft law 

instruments involve, for instance: ISO 26000 Guidance Standard on Social Responsibility (ISO 

26000); Social Accountability 8000 (focusing on workers’ rights and workplace conditions); 
OHSAS 18001 (regarding the health and safety of employees and minimising the risk of 

accidents); ISO 14001 and Eco-Management and Audit Scheme (EMAS) [258]. 

Furthermore, AI-enabled technologies developed by industry are results of their research and 
innovation (R&I) activities. Therefore, responsibility of industry relates to a specific type of 

business strategy and operations, namely companies’ R&I processes and outcomes. 

Responsibility in the context of R&I is known as the concept of responsible research and 
innovation (RRI), which focuses on the development of products and processes that are ethically 

acceptable, socially desirable and respond to the needs and expectations of people and the 

society [259]. According to the most well-known definition of RRI, developed by René von 

Schomberg, RRI is “a transparent, interactive process by which societal actors and innovators 
become mutually responsive to each other with a view to the (ethical) acceptability, sustainability 

and societal desirability of the innovation process and its marketable products (in order to allow 

a proper embedding of scientific and technological advances in our society)” . RRI emphasises 
the importance of the stakeholders’ role in the R&I process, thus RRI “should be understood as 
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a strategy of stakeholders to become mutually responsive to each other, anticipating research 

and innovation outcomes aimed at the “grand challenges” of our time, for which they share 
responsibility”. Values and principles of RRI are relevant for AI ethics and include: (i) inclusion 

(also called engagement or involvement of society), (ii) anticipation (assessment at an early stage 

in research and innovation (R&I) of benefits and risks), (iii) reflexivity (reflecting on values and 

beliefs during R&I) and (iv) responsiveness (the ability to change routines, structures and systems 
to adapt to changing circumstances and new insights) [260]. 

Various other concepts and approaches incorporate responsibility into R&I processes and 
outcomes, such as social design, socially responsible design (SRD), eco- design, design for values, 

open innovation, social innovation, environmental innovation, sustainable innovation [261]. 

While there are differences between how responsibility is conceptualised and defined in these 

approaches, responsibility of industry for their R&I activities may serve as an umbrella term 
involving sustainability, societal, ethical, human rights, and environmental impacts.  

4.4 Automation, digitalization, and meaningful work 

Following from the foregoing overviews of the state of the art in AI ethics and responsible 

research and innovation in industry, it is instructive to consider an emerging issue with relevance 
to the relationship between employers and workers. This issue illustrates the necessity of careful 

and deliberate application and operationalisation of ethical principles and requirements, and 

ultimately corporate social responsibility—meaningful work in workplaces that are altered by 
new automated and digital technologies. 

The concept of meaningful work, and what it entails in practice, has been the source of 

multidisciplinary inquiry for many years [262–264]. More recently, scholarship has been 
emerging relating to digital and automation technologies and how they might help or hinder 

meaningful work or moral development. As OPTIMAI technologies will be implemented and 

deployed in industrial working environments and will have implications for workers’ experiences 
of meaning in the workplace as a result of the changing nature of tasks and how they are 

executed, it is worthwhile to consider this emerging literature. 

Meaningful work, from an ethical perspective, can be conceptualised differently depending on 

the ethical framework consulted. Norman E. Bowie, from a Kantian deontological perspective, 

defines six criteria of what is entailed by meaningful work: 

1. Meaningful work is work that is freely entered. 

2. Meaningful work allows the worker to exercise her autonomy and independence. 

3. Meaningful work enables the worker to develop her rational capacities. 

4. Meaningful work provides a wage sufficient for physical welfare. 

5. Meaningful work supports the moral development of employees. 

6. Meaningful work is not paternalistic in the sense of interfering with the worker’s 
conception of how she wishes to obtain happiness [262]. 
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From a virtue ethics perspective, extrapolating from the work of renowned virtue ethicist 

Alasdair MacIntyre, Ron Beadle and Kelvin Knight argue that meaning “…supervenes upon the 
active and intentional pursuit of goods internal to practices…” and further “[n]ot only skills, 

maxims and rules but also practical judgment and moral character are learned through work 

that actualizes the good of a certain kind of life.” [263]. 

Nevertheless, there is broad agreement that work is meaningful whereby it is purposeful and 

provides some autonomy and capacity for growth and self-development to workers.  

Jilles Smids, Sven Nyholm, and Hannah Berkers provide a thorough account of the opportunities 

and threats to meaningful work by robots in the workplace (though their analysis can be read as 

applicable to many different technology driven workplace innovations) [265].  The authors 

identify five pathways to or sources of meaningful work including: 

1. Pursuing a purpose 

2. Social relationships 

3. Exercising skills and self-development 

4. Self-esteem and recognition 

5. Autonomy [265] 

The authors analyse the threats and opportunities arising for these five categories. It is 
instructive to provide an overview of each of these categories with reference to the literature 

emerging on the broad topic of digital and automation innovation in the workplace. 

Pursuing a Purpose: Smids et al. argue that automation of challenging tasks can reduce workers 

feelings of purpose (they provide the example of how a doctor may feel less purpose where 

machine learning algorithms perform diagnoses) [265].  

On the other hand, if technologies such as AI or robots assist in rather than assume tasks, or 

assume boring tasks, human workers may not necessarily feel diminished purpose or may be 

able to focus greater effort on more meaningful tasks [265]. 

Social Relationships: The replacement of humans with robots (or other automated or digital 

technologies for that matter) can plausibly lead to less social interactions between workers, 
increasing isolation and feelings of meaninglessness [265]. 

However, the supplementation or replacement of certain kinds of roles can also free workers’ 

time so that it can be put towards other socially oriented [265]. In other cases, new technologies 
like internet of things may facilitate more collaboration between people [244]. 

Exercising Skills and Self-Development: The substitution of tasks by different IT artefacts may 
cause human skills to become obsolete, and “[t]he development and exercise of these skills then 

will no longer be a source of meaningfulness for human workers, and their job will be less 

conducive to self-realization.” [265]. Shannon Vallor also warns that ICTs can result in moral de-

skilling, which is to say the replacement of tasks by automated or digital technologies can reduce 
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opportunities for practising skills that ultimately contribute to the development of practical 

wisdom and moral habituation and thus virtue [266].  

Michele Loi argues that far from being enhancing, new technologies may disenhance more 

people (that is, reduce their abilities) than they enhance and contribute to job polarization [267]. 

On the other hand, technological innovation in the workplace may necessitate upskilling  [265]. 

In manufacturing in particular, monitoring and machine-control tasks may require workers to 

upskill [268]. The use of wearables and AR/VR in particular lends itself to fast and efficient 
training  [268]. 

Robots and Self-Esteem and Recognition: If human tasks are assumed by automated or digital 
technologies, human operators may feel less self-worth and their jobs may receive less social-

recognition [233,265]. Michele Loi argues that a job may lose its prestige where machines do it 

better [267]. 

However, it may also be that job roles requiring adaptation and upskilling by human workers 

gain more prestige and recognition [265]. On this note, however, it must also be considered that 

new high value jobs may not necessarily be performed by the same workers precisely because 
of the higher skill requirements entailed  [268]. 

Autonomy: Autonomy has already been discussed in some detail, however reviewing this value 

from the perspective of meaningful work yields additional insights worth considering during the 
development of technologies that alter the workplace and how workers experience it. 

Very strict protocols relating to the use of new technologies may reduce the scope for workers’ 
job crafting. Additionally, data driven innovations may lead to worker monitoring (including 

performance monitoring) which can undermine worker autonomy  [265]. Wearables, for 

example, can monitor location, movement and sentiment [269]. VR/AR may also, for example,  
cause a shift towards task driven work with less autonomy (though there are trade-offs, see 

below) [268]. 

The opacity of machine learning algorithms may also reduce workers’ understanding of their job, 
and thus autonomy [265]. 

On the other hand, the supervision and use of automated or digital technologies may increase 
worker responsibility and autonomy—enhanced agency may help workers better realise their 

goals [265]. Worker monitoring may also be for positive reasons, including health and safety 

[269], that can ultimately increase worker agency. According to Eurofound, “[t]he demand for 

skills when using wearable devices indicates a need for digitally educated workers who can work 
with data flows from wearables but also to monitor their own performance or interact with 

machines” [268]—therefore digital technologies can extend human agency.   
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5 Summary – Discussion of Results 

This section provides a detailed summary of the conducted literature review analysis followed 

by a thorough discussion on the contribution of AI-based technologies in smart manufacturing. 
The most widespread AI technologies which were mined in this report are CNNs, DL, ANNs, etc.  

These AI methodologies were employed in each one of the investigated domains, namely 
Metrology, AI-enhanced Digital Twins, IoT sensors, Computer Vision and Augmented Reality, 

Quality Control, Predictive Maintenance and Zero-Defect Manufacturing. 

5.1 Technical aspects of AI use in smart manufacturing 

5.1.1 AI-enhanced metrology 

The distribution of AI-technologies employed in smart metrology is summarized and visualized 

in Figure 86. 

 

Figure 86. Distribution of employed technologies for AI-enhanced metrology. 

It emerges that ANNs (27%), SVMs (20%) and CNNs (13%) are the dominant technologies in this 

field. Other machine learning methods (such as evolutionary computation, particle swarms, PCA, 

etc.) seem to have a notable presence in this domain. 

5.1.2 AI-enhanced digital twins 

The distribution of AI-technologies employed in AI-enhanced digital twins is summarized and 

visualized in Figure 87. As for the Digital Twins domain, there is a distribution supremacy of CNNs 

(28%) and Deep NNs (27%) against other ML based methods, such as genetic algorithms, particle 

swarm optimization (PSO) and Bayesian Networks. The learning capacity of CNNs and Deep NNs 
has brought them into a dominant position, being employed in roughly half of the case studies. 
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Figure 87. Distribution of employed technologies for AI-enhanced digital twins. 

5.1.3 AI-enhanced IoT 

Regarding AI-enhanced IoT, few research works (5 articles) were extracted and included in this 

literature review. Out of 5 articles, 2 utilize Deep NNs (40%), and each of the rest deploy ANNs, 

Reinforcement learning and knowledge-based algorithms (Figure 88).   

 

Figure 88. Distribution of employed technologies for AI-enhanced IoT. 

5.1.4 AI-enhanced computer vision 

In Computer vision, CNNs are the most commonly used methods to interpret and understand 
the visual world (Figure 89). Using digital images from cameras and videos, CNNs (44%), SVMs 

(26%) and deep learning models (18%) can accurately perform object detection, recognition and 

classification.  
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Figure 89. Distribution of employed technologies for AI-enhanced computer vision. 

5.1.5 AI-enhanced augmented reality 

The purpose of augmented reality is to visualize data without extracting patterns and proceed 

to further recognition, thus the use of AI techniques is not a priority which explains the limited 

number of articles in this domain. In this context, Deep NNs (57%) hold the biggest percentage 

whereas the other two (CNNs and Reinforcement learning) occupy the rest of the distribution, 
29% and 14% correspondingly (Figure 90). 

 

Figure 90. Distribution of employed technologies for AI-enhanced augmented reality. 
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Regarding quality control procedures, CNNs are again the choice of preference (44%), along with 
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sophisticated algorithms, therefore, multiple AI-technologies are continuously assessed. Here, it 

is worth mentioning that only one article is found for each one of the AI categories (Deep NNs, 
Recurrent NNs, DTs, SVMs), and in AI category “others” the only article is devoted to the 

employment of interval Type II fuzzy logic in manufacturing quality assessment procedure. 

 

Figure 91. Distribution of employed technologies for AI-enhanced quality control. 

5.1.7 AI-enhanced predictive maintenance 

ANNs and Deep NNs are also very popular among predictive maintenance applications, as well. 

Their learning capacity has brought them into a dominant position, being employed in more 
than half of the case studies (Figure 92). ANN usage (37%) is followed by Deep NNs (21%) and 

SVMs and Bayesian Networks at smaller utilization ratios (11% respectively). 

 

Figure 92. Distribution of employed technologies for AI-enhanced predictive maintenance. 
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Additionally, a recent article concerning a systematic literature review of machine learning 

methods applied to predictive maintenance [3] was scrutinised covering the main published 
solutions of predictive maintenance techniques based on ML methods. 

5.1.8 AI-enhanced zero-defect manufacturing 

Figure 93 represents the significant distribution of CNNs in ZDM compared to other state of the 

art ML techniques, as their architectures are able to deal with big multimodal datasets, 

addressing the problems of defect detection and fault diagnosis. CNN extreme usage (75%) is 
followed by smaller utilization ratios of SVMs, Decision Trees and other ML methods (e.g. PCA). 

 

Figure 93. Distribution of employed technologies for AI-enhanced ZDM. 

5.1.9 Distribution of AI-technologies in smart manufacturing 

It is evident that ANNs and Deep Learning possess a dominant ratio in most – if not all aspects – 

of smart manufacturing. It is interesting to review a summary for the exploitation of the most 

popular reported AI-technologies in the various field areas.  

An overall summary of AI technologies in all investigated fields in smart manufacturing is 

provided in Figure 94. It is obvious that CNNs, followed by ANNs and Deep NNs, have been 
exploited and applied to a greater extent than other popular AI methods. This is attributed to 

the fact that CNNs are among the most powerful deep learning techniques presenting notable 

capabilities on analyzing and classifying images, detecting objects, identifying defects, 

diagnosing faults etc. which improve the efficiency and performance of industrial processes. 
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Figure 94. Overall summary of AI technologies in all investigated fields in smart manufacturing. 

Furthermore, the category “Others” devoted to other ML methods such as fuzzy logic, genetic 
algorithms, evolutionary algorithms, PCA, has a significant share in various stages of smart 

manufacturing. 

Taking one step further, we analyze the contribution of each one popular AI technologies to 

every field investigated in the realm of smart manufacturing (Figure 95 and Figure 96). It is clearly 

observed that CNNs are involved in all investigated fields except IoT with the biggest applicability. 
ANNs and Deep NNs show a similar trend with a smaller degree of participation in each category. 

The rest of the methods are involved in either 3, 4 or 5 domains with a moderate overall 

contribution. 

 

Figure 95. Use of most popular AI-technologies in various stages of smart manufacturing. 
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Figure 96. Dependence of smart manufacturing on most popular AI-technologies. 

It is observed that ZDM, Quality Control and Computer vision are the fields with the highest 

involvement of CNNs, whereas Predictive Maintenance and Metrology encapsulate ANNs in a 
significant degree. We observe that Metrology is more mature than the other domains, as it uses 

almost all AI potentials; Predictive Maintenance and Quality Control are the next domains with 

the most AI methods applied in. Predictive Maintenance and ZDM are considered promising 

fields of intensive research, attracting the interest of research community on the efficient 
capabilities of deep learning. Hence, they establish the disciplines of Maintenance 4.0 and Smart 

Industry and provide opportunities for the development of new advanced AI and ML 

methodologies. 

5.2 Ethical aspects of AI use in smart manufacturing 

The reviewed literature demonstrates difficult regulatory challenges ahead stemming from the 

convergence of Web 4.0, Industry 4.0, and IoT technologies whilst also indicating new 

opportunities for new regulatory eco-systems. The foregoing has demonstrated burgeoning 
multi-sectoral and international interest in normative research on these technologies, and that 

work is moving at pace on the creation of standards and a plethora of guidelines and principles 

that can contribute to the regulatory environment of convergence technologies, and one which 

can uphold human values.  

A review of the literature has informed the direction the OPTIMAI ethical and legal framework 

will take. The OPTIMAI project will primarily adopt the EU HLEG’s  “Ethics Guidelines for 
Trustworthy AI”, acknowledging it as a preeminent European source of action guiding and 

operationalizable principles, whilst also cognisant of important developments resulting from the 

SHERPA and SIENNA projects and other initiatives. As such, the high-level principles adopted by 

OPTIMAI will be i) Human autonomy; ii) Prevention of harms; iii) Fairness; and v) Explicability, 
further translated down into specific requirements of i) Human agency and oversight; ii) 

Technical robustness and safety; iii) Privacy and data governance; iv) Transparency; v) Diversity, 
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non-discrimination and fairness; vi) Environmental and societal well-being; and, vii) 

Accountability.  

The existing literature offers early general guidance on the kinds of measures necessary to 

uphold the principles offered by the EU HLEG that provide a springboard for further research in 

the context of OPTIMAI, including (but not limited to) mitigation measures against coercion; the 
deployment of ethical and legal impact assessments; participatory design methods; 

environmentally sustainable design; methods for identifying bias in data sets; and appropriate 

accountability and transparency measures, including explainability of system outcomes.  

The careful and deliberate application of ethical principles and their translation into appropriate 

ethical requirements in the context of OPTIMAI will be necessary to preserve or enhance positive 

relations between company stakeholders and meaningful work, which is to say work that gives 
workers purpose, facilitates social relationships, allows workers to exercise skills and self-

development, supports self-esteem and recognition, and worker autonomy. 
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6 Conclusions 

In this deliverable, a rigorous assessment of state of the art and existing results deriving from 

both related projects and research articles, was performed to identify those that are highly 
relevant to OPTIMAI. On this basis, EFFRA, as a dedicated  industry-related projects association, 

was surveyed independently to identify all relevant projects on a per-case basis. Consequently, 

15 EU-funded projects (mostly FoF-11 projects) were extracted and selected to be reviewed in 
this deliverable. The assessment was implemented in terms of functionality provided, innovation 

capacity, technology, status, etc. sparking at the same time co-operation activities with other 

projects, and even more, providing a starting point for T8.2. 

A comprehensive state of the art analysis of research articles was carried out in relevant scientific 

domains according to participating partners’ expertise. Among the explored domains were AI for 

Industry, Metrology, AI-enhanced Digital Twins, IoT sensors, Computer Vision and Augmented 
Reality, Quality Control, Predictive Maintenance and Zero-Defect Manufacturing. 

As regards the articles selection process, a systematic literature review method was properly 
chosen to meet the objectives of this task. Although being a time-consuming process, the 

proposed systematic literature review method is well-structured and seems to be the most 

suitable for carrying out research. Thus, it allowed the incorporation of exclusive articles which 

were explicit to the subject of this systematic review. 

The conducted process was focused on the most popular on-line publishers which offer open-

access journal mining, including among others: IEEE, Elsevier, Springer, MDPI, IOP, etc. 
ScienceDirect and Scopus were also exploited as scientific and technical search engines for peer-

reviewed journal articles and book chapters, covering a range of disciplines, from the theoretical 

to the applied. Furthermore, papers citing the identified works were also explored, to make sure 

that the latest progress was included. As a result, 122 articles in total, dated from January 2015 
to April 2021, were selected and accordingly assessed to fulfil the state-of-the-art analysis.  

Taking a close look at the produced outcomes, it is noted that CNNs (24%), ANN models (18%) 
and Deep NNs (17%) have shown significant contribution in almost all relevant scientific domains 

explored in this deliverable. More specifically, as regards smart manufacturing, Deep learning 

models are the most commonly applied models for image analysis, classification, object 

detection, recognition and quality control. Implementation of deep learning in imaging is mainly 
conducted via CNNs, as a relatively new and powerful technique to learn useful representations 

of images and other structured data. In particular, with the introduction of CNNs, features from 

vision systems could be learned directly from the provided data. On the whole, because of 
certain preferences in their structure, CNNs become powerful deep learning models for image 

analysis and quality control processes in production lines.  

Due to the popularity of CNNs in vision systems, several applications of CNNs were investigated 
in the field of computer vision, quality control and defect detection in various manufacturing 

procedures. Other deep learning architectures like GoogleNet, AlexNet, ResNet etc. have also 
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been applied in manufacturing for classification and visual analysis tasks. In some cases, AI-

technologies are employed coupled with other mathematical models, like Decision Trees, 
Bayesian Networks, k-Nearest Neighbor etc., and form hybrid methods with elevated efficiency. 

Altogether, review studies and published articles in the last six years gather all the important, 

innovative, and most interesting applications of AI technologies. 

The inclusion and review of a number of scientific studies as presented in this deliverable, 

contribute towards providing a comprehensive, well-structured overview of the most popular AI-

based technologies that have been embedded lately in the process of Smart manufacturing 
aiming to improve system performance. Additionally, a plethora of challenges have been 

identified that need to be faced in the application of ML and Deep Learning techniques for Smart 

Manufacturing. These are mainly related to complexity and dynamic behaviors, data privacy and 

other security issues, as well as the selection or combination of the appropriate AI techniques 
and algorithms to handle various situations in the flexible manufacturing systems. Overall, this 

assessment provides the basis for triggering collaboration with other projects as well as it will 

yield further insights and connections to the next deliverables/tasks. 

Following the technological challenges arisen with AI technology systems adopted in Industry 

4.0, which mainly focus on privacy, safety, manipulation, transparency, fairness and 

accountability, certain considerations concerning the AI ethics have been made in OPTIMAI. On 
this basis, all the ethical principles required on the development of products and processes have 

been followed to provide an ethically acceptable and socially desirable framework which is in 

line with the expectations of people and the society.



141 

References 

[1] X. Xu, Machine Tool 4.0 for the new era of manufacturing, Int J Adv Manuf Technol. 92 
(2017) 1893–1900. https://doi.org/10.1007/s00170-017-0300-7. 

[2] B. Kitchenham, Procedures for Performing Systematic Reviews, n.d. 
https://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf. 

[3] T.P. Carvalho, F.A.A.M.N. Soares, R. Vita, R. da P. Francisco, J.P. Basto, S.G.S. Alcalá, A 
systematic literature review of machine learning methods applied to predictive 
maintenance, Computers & Industrial Engineering. 137 (2019) 106024. 
https://doi.org/10.1016/j.cie.2019.106024. 

[4] EFFRA | European Factories of the Future Research Association, (n.d.). 
https://www.effra.eu/. 

[5] Crossref, (n.d.). https://www.crossref.org/. 
[6] About Google Scholar, (n.d.). https://scholar.google.com/intl/en/scholar/about.html. 
[7] Microsoft Academic, Microsoft Research. (n.d.). https://www.microsoft.com/en-

us/research/project/academic/. 
[8] Elsevier, Scopus, (n.d.). https://www.elsevier.com/solutions/scopus. 
[9] HEAL-Link, Hellenic Academic Libraries Association. (n.d.). https://www.heal-link.gr. 
[10] K. Caldwell, L. Henshaw, G. Taylor, Developing a framework for critiquing health research: 

An early evaluation, Nurse Education Today. 31 (2011) e1–e7. 
https://doi.org/10.1016/j.nedt.2010.11.025. 

[11] i4Q | EFFRA, (n.d.). https://portal.effra.eu/project/2001. 
[12] i4Q, I4Q Project. (n.d.). https://www.i4q-project.eu. 
[13] DAT4.ZERO | EFFRA, (n.d.). https://portal.effra.eu/project/2005. 
[14] InterQ | EFFRA, (n.d.). https://portal.effra.eu/project/2006. 
[15] InterQ, InterQ Project. (n.d.). https://interq-project.eu/. 
[16] FAR-EDGE, (n.d.). http://www.faredge.eu. 
[17] FAR-EDGE - Edge for Industry, Edge4Industry. (n.d.). https://www.edge4industry.eu/. 
[18] NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in 

Europe | EFFRA Innovation Portal, (n.d.). https://portal.effra.eu/project/1641. 
[19] NIMBLE Objectives, (n.d.). https://www.nimble-project.org/project/work-plan/. 
[20] SAFIRE website, SAFIRE. (n.d.). https://www.safire-factories.org. 
[21] vf-OS  | EFFRA, (n.d.). https://portal.effra.eu/project/1648 (accessed June 6, 2021). 
[22] vf-OS | virtual factory Operating System, Vf-Os. (n.d.). https://www.vf-os.eu. 
[23] SCALABLE4.0  | EFFRA, (n.d.). https://portal.effra.eu/project/1683. 
[24] ScalABLE 4.0 – Development and demonstration of an (OSPS), (n.d.). 

http://www.scalable40.eu/. 
[25] Qu4lity, Qu4lity. (n.d.). https://qu4lity-project.eu/ (accessed November 28, 2020). 
[26] QU4LITY Project, (n.d.). https://cordis.europa.eu/project/id/825030 (accessed November 

28, 2020). 
[27] F. Bernardini, O. Lazaro, I. Cairo, M. Valli, New visions towards zero defect manufacturing, 

(n.d.) 6. 
[28] M. Sesana, A. Moussa, Collaborative Augmented worker and Artificial Intelligence in Zero 

defect Manufacturing environment, MATEC Web Conf. 304 (2019) 04003. 
https://doi.org/10.1051/matecconf/201930404003. 



 

142 

[29] F. Eger, D. Coupek, D. Caputo, M. Colledani, M. Penalva, J.A. Ortiz, H. Freiberger, G. 
Kollegger, Zero Defect Manufacturing Strategies for Reduction of Scrap and Inspection 
Effort in Multi-stage Production Systems, Procedia CIRP. 67 (2018) 368–373. 
https://doi.org/10.1016/j.procir.2017.12.228. 

[30] ForZDM Project, (n.d.). https://www.forzdmproject.eu/ (accessed November 28, 2020). 
[31] STREAM-0D, STREAM-0D. (n.d.). https://www.stream-0d.com/ (accessed November 28, 

2020). 
[32] interTEN, Z-Factor, Z-Fact0r. (n.d.). https://www.z-fact0r.eu/ (accessed November 28, 

2020). 
[33] G. May, D. Kiritsis, Zero Defect Manufacturing Strategies and Platform for Smart Factories 

of Industry 4.0, in: L. Monostori, V.D. Majstorovic, S.J. Hu, D. Djurdjanovic (Eds.), 
Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced 
Manufacturing, Springer International Publishing, Cham, 2019: pp. 142–152. 
https://doi.org/10.1007/978-3-030-18180-2_11. 

[34] GO0D MAN – Agent Oriented Zero Defect Multi-Stage Manufacturing, (n.d.). 
http://go0dman-project.eu/ (accessed December 20, 2020). 

[35] R. Peres, A.D. Rocha, J.P. Matos, J. Barata, GO0DMAN Data Model - Interoperability in 
Multistage Zero Defect Manufacturing, in: 2018 IEEE 16th International Conference on 
Industrial Informatics (INDIN), 2018: pp. 815–821. 
https://doi.org/10.1109/INDIN.2018.8472017. 

[36] M.R.J. Eleftheriadis, A guideline of quality steps towards Zero Defect Manufacturing in 
Industry, (2016) 9. 

[37] IFaCOM Project, (n.d.). https://cordis.europa.eu/project/id/285489 (accessed December 
20, 2020). 

[38] ZDMP | EFFRA, (n.d.). https://portal.effra.eu/project/1866. 
[39] ZDPM, Zdmp. (n.d.). https://www.zdmp.eu. 
[40] KYKLOS 4.0, (n.d.). https://kyklos40project.eu/ (accessed December 20, 2020). 
[41] PreCoM, PreCom Project. (n.d.). https://www.precom-project.eu/project-overview/ 

(accessed January 19, 2021). 
[42] Fortissimo, (n.d.). https://www.fortissimo-project.eu/ (accessed January 20, 2021). 
[43] DataPorts, (n.d.). https://dataports-project.eu/ (accessed January 19, 2021). 
[44] administrator, SERENA, SERENA. (n.d.). https://serena-project.eu/ (accessed December 20, 

2020). 
[45] administrator, SERENA Methodology, SERENA. (n.d.). http://serena-project.eu/scope/ 

(accessed January 17, 2021). 
[46] PREVISION, (n.d.). http://www.prevision-h2020.eu/ (accessed December 20, 2020). 
[47] Factory2Fit Empowering and participatory adaptation of factory automation to fit for 

workers | EFFRA Innovation Portal, (n.d.). https://portal.effra.eu/project/1627 (accessed 
January 17, 2021). 

[48] F2F_core-diagram.png (2048×1280), (n.d.). https://factory2fit.eu/wp-
content/uploads/2018/03/F2F_core-diagram.png (accessed January 17, 2021). 

[49] konfidomanager, The KONFIDO Concept, KONFIDO. (2014). https://konfido-
project.eu/content/konfido-concept (accessed January 17, 2021). 

[50] M. Staffa, L. Sgaglione, G. Mazzeo, L. Coppolino, S. D’Antonio, L. Romano, E. Gelenbe, O. 
Stan, S. Carpov, E. Grivas, P. Campegiani, L. Castaldo, K. Votis, V. Koutkias, I. Komnios, An 



 

143 

OpenNCP-based Solution for Secure eHealth Data Exchange, Journal of Network and 
Computer Applications. 116 (2018) 65–85. https://doi.org/10.1016/j.jnca.2018.05.012. 

[51] RECLAIM Project, (n.d.). https://cordis.europa.eu/project/id/869884 (accessed January 18, 
2021). 

[52] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997. 
[53] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A.K. Nandi, Applications of machine learning to machine 

fault diagnosis: A review and roadmap, Mechanical Systems and Signal Processing. 138 
(2020) 106587. https://doi.org/10.1016/j.ymssp.2019.106587. 

[54] P. Lade, R. Ghosh, S. Srinivasan, Manufacturing Analytics and Industrial Internet of Things, 
IEEE Intell. Syst. 32 (2017) 74–79. https://doi.org/10.1109/MIS.2017.49. 

[55] D. Wu, C. Jennings, J. Terpenny, R.X. Gao, S. Kumara, A Comparative Study on Machine 
Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random 
Forests, Journal of Manufacturing Science and Engineering. 139 (2017) 071018. 
https://doi.org/10.1115/1.4036350. 

[56] M. Helu, D. Libes, J. Lubell, K. Lyons, K.C. Morris, Enabling Smart Manufacturing 
Technologies for Decision-Making Support, in: Volume 1B: 36th Computers and 
Information in Engineering Conference, American Society of Mechanical Engineers, 
Charlotte, North Carolina, USA, 2016: p. V01BT02A035. https://doi.org/10.1115/DETC2016-
59721. 

[57] T. Wuest, D. Weimer, C. Irgens, K.-D. Thoben, Machine learning in manufacturing: 
advantages, challenges, and applications, Production & Manufacturing Research. 4 (2016) 
23–45. https://doi.org/10.1080/21693277.2016.1192517. 

[58] J. Wang, Y. Ma, L. Zhang, R.X. Gao, D. Wu, Deep learning for smart manufacturing: Methods 
and applications, Journal of Manufacturing Systems. 48 (2018) 144–156. 
https://doi.org/10.1016/j.jmsy.2018.01.003. 

[59] B. Bajic, I. Cosic, M. Lazarevic, N. Sremcev, A. Rikalovic, Machine Learning Techniques for 
Smart Manufacturing: Applications and Challenges in Industry 4.0, in: 2018. 

[60] S. Fahle, C. Prinz, B. Kuhlenkötter, Systematic review on machine learning (ML) methods 
for manufacturing processes – Identifying artificial intelligence (AI) methods for field 
application, Procedia CIRP. 93 (2020) 413–418. 
https://doi.org/10.1016/j.procir.2020.04.109. 

[61] S. Klancnik, M. Brezocnik, J. Balic, Intelligent CAD/CAM System for Programming of CNC 
Machine Tools, Int. j. Simul. Model. 15 (2016) 109–120. 
https://doi.org/10.2507/IJSIMM15(1)9.330. 

[62] J.-L. Loyer, E. Henriques, M. Fontul, S. Wiseall, Comparison of Machine Learning methods 
applied to the estimation of manufacturing cost of jet engine components, International 
Journal of Production Economics. 178 (2016) 109–119. 
https://doi.org/10.1016/j.ijpe.2016.05.006. 

[63] J.-M. Pou, L. Leblond, Smart Metrology: From the metrology of instrumentation to the 
metrology of decisions, in: C. Corletto (Ed.), 18th International Congress of Metrology, EDP 
Sciences, Paris, France, 2017: p. 01007. https://doi.org/10.1051/metrology/201701007. 

[64] Y. Wang, P. Zheng, X. Xu, H. Yang, J. Zou, Production planning for cloud-based additive 
manufacturing—A computer vision-based approach, Robotics and Computer-Integrated 
Manufacturing. 58 (2019) 145–157. https://doi.org/10.1016/j.rcim.2019.03.003. 

[65] N. Rana, Y. Zhang, D. Wall, B. Dirahoui, Predictive data analytics and machine learning 
enabling metrology and process control for advanced node IC fabrication, in: 2015 26th 



 

144 

Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), IEEE, Saratoga 
Springs, NY, USA, 2015: pp. 313–319. https://doi.org/10.1109/ASMC.2015.7164502. 

[66] N. Rana, Y. Zhang, D. Wall, B. Dirahoui, T.C. Bailey, Machine learning and predictive data 
analytics enabling metrology and process control in IC fabrication, in: J.P. Cain, M.I. 
Sanchez (Eds.), San Jose, California, United States, 2015: p. 94241I. 
https://doi.org/10.1117/12.2087406. 

[67] S. Du, C. Liu, L. Xi, A Selective Multiclass Support Vector Machine Ensemble Classifier for 
Engineering Surface Classification Using High Definition Metrology, Journal of 
Manufacturing Science and Engineering. 137 (2015) 011003–1. 
https://doi.org/10.1115/1.4028165. 

[68] S. Du, H. Delin, H. Wang, An Adaptive Support Vector Machine-Based Workpiece Surface 
Classification System Using High-Definition Metrology, IEEE Transactions on 
Instrumentation and Measurement. 64 (2015). https://doi.org/10.1109/TIM.2015.2418684. 

[69] V. Koblar, K. Gantar, Determining Surface Roughness of Semifinished Products Using 
Computer Vision and Machine Learning, (2015). /paper/Determining-Surface-Roughness-
of-Semifinished-Using-Koblar-Gantar/583be6e3ccf9853a38dd0bc642cd74d1f45c1dfe 
(accessed May 24, 2021). 

[70] H.-F. Kuo, A. Faricha, Artificial Neural Network for Diffraction Based Overlay Measurement, 
IEEE Access. 4 (2016) 7479–7486. https://doi.org/10.1109/ACCESS.2016.2618350. 

[71] P. Kang, D. Kim, S. Cho, Semi-supervised support vector regression based on self-training 
with label uncertainty: An application to virtual metrology in semiconductor 
manufacturing, Expert Systems with Applications. 51 (2016) 85–106. 
https://doi.org/10.1016/j.eswa.2015.12.027. 

[72] N.M. Durakbasa, J. Bauer, G. Poszvek, Advanced Metrology and Intelligent Quality 
Automation for Industry 4.0-Based Precision Manufacturing Systems, Solid State 
Phenomena. 261 (2017) 432–439. https://doi.org/10.4028/www.scientific.net/SSP.261.432. 

[73] M. Terzi, C. Masiero, A. Beghi, M. Maggipinto, G.A. Susto, Deep learning for virtual 
metrology: Modeling with optical emission spectroscopy data, in: 2017 IEEE 3rd 
International Forum on Research and Technologies for Society and Industry (RTSI), IEEE, 
Modena, Italy, 2017: pp. 1–6. https://doi.org/10.1109/RTSI.2017.8065905. 

[74] V. Vakharia, M.B. Kiran, N.J. Dave, U. Kagathara, Feature extraction and classification of 
machined component texture images using wavelet and artificial intelligence techniques, 
in: 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), 
IEEE, Prague, Czech Republic, 2017: pp. 140–144. 
https://doi.org/10.1109/ICMAE.2017.8038631. 

[75] Y. Shao, S. Du, L. Xi, 3D Machined Surface Topography Forecasting With Space-Time 
Multioutput Support Vector Regression Using High Definition Metrology, in: Volume 1: 
37th Computers and Information in Engineering Conference, American Society of 
Mechanical Engineers, Cleveland, Ohio, USA, 2017: p. V001T02A069. 
https://doi.org/10.1115/DETC2017-67155. 

[76] T. Kagalwala, S. Mahendrakar, A. Vaid, P.K. Isbester, A. Cepler, C. Kang, N. Yellai, M. 
Sendelbach, M. Ko, O. Ilgayev, Y. Katz, L. Tamam, I. Osherov, Complex metrology on 3D 
structures using multi-channel OCD, in: M.I. Sanchez, V.A. Ukraintsev (Eds.), San Jose, 
California, United States, 2017: p. 101451C. https://doi.org/10.1117/12.2261419. 



 

145 

[77] G.A. Susto, M. Terzi, A. Beghi, Anomaly Detection Approaches for Semiconductor 
Manufacturing, Procedia Manufacturing. 11 (2017) 2018–2024. 
https://doi.org/10.1016/j.promfg.2017.07.353. 

[78] E.A. Kholief, S.H. Darwish, M.N. Fors, Detection of Steel Surface Defect Based on Machine 
Learning Using Deep Auto-encoder Network, (2017) 13. 

[79] W. Zhou, Y. Song, X. Qu, Z. Li, A. He, Fourier transform profilometry based on convolution 
neural network, in: Optical Metrology and Inspection for Industrial Applications V, 
International Society for Optics and Photonics, 2018: p. 108191M. 
https://doi.org/10.1117/12.2500884. 

[80] N. Senin, R. Leach, Information-rich surface metrology, Procedia CIRP. 75 (2018) 19–26. 
https://doi.org/10.1016/j.procir.2018.05.003. 

[81] U. Delli, S. Chang, Automated Process Monitoring in 3D Printing Using Supervised Machine 
Learning, Procedia Manufacturing. 26 (2018) 865–870. 
https://doi.org/10.1016/j.promfg.2018.07.111. 

[82] D.Yu. Pimenov, A. Bustillo, T. Mikolajczyk, Artificial intelligence for automatic prediction of 
required surface roughness by monitoring wear on face mill teeth, J Intell Manuf. 29 (2018) 
1045–1061. https://doi.org/10.1007/s10845-017-1381-8. 

[83] S. Kang, On Effectiveness of Transfer Learning Approach for Neural Network-Based Virtual 
Metrology Modeling, IEEE Trans. Semicond. Manufact. 31 (2018) 149–155. 
https://doi.org/10.1109/TSM.2017.2787550. 

[84] M. Papananias, T.E. McLeay, M. Mahfouf, V. Kadirkamanathan, An Intelligent Metrology 
Informatics System based on Neural Networks for Multistage Manufacturing Processes, 
Procedia CIRP. 82 (2019) 444–449. https://doi.org/10.1016/j.procir.2019.04.148. 

[85] D. Hou, T. Liu, Y.-T. Pan, J. Hou, AI on edge device for laser chip defect detection, in: 2019 
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, 
Las Vegas, NV, USA, 2019: pp. 0247–0251. https://doi.org/10.1109/CCWC.2019.8666503. 

[86] K. Wasmer, T. Le-Quang, B. Meylan, S.A. Shevchik, In Situ Quality Monitoring in AM Using 
Acoustic Emission: A Reinforcement Learning Approach, J. of Materi Eng and Perform. 28 
(2019) 666–672. https://doi.org/10.1007/s11665-018-3690-2. 

[87] K.B. Lee, C.O. Kim, Recurrent feature-incorporated convolutional neural network for virtual 
metrology of the chemical mechanical planarization process, J Intell Manuf. 31 (2020) 73–
86. https://doi.org/10.1007/s10845-018-1437-4. 

[88] C. Rendón-Barraza, E.A. Chan, G. Yuan, G. Adamo, T. Pu, N.I. Zheludev, Optical Metrology 
of Sub-Wavelength Objects Enabled by Artificial Intelligence, ArXiv:2005.04905 [Physics]. 
(2020). http://arxiv.org/abs/2005.04905 (accessed November 27, 2020). 

[89] T. Kotsiopoulos, L. Leontaris, N. Dimitriou, D. Ioannidis, F. Oliveira, J. Sacramento, S. 
Amanatiadis, G. Karagiannis, K. Votis, D. Tzovaras, P. Sarigiannidis, Deep multi-sensorial 
data analysis for production monitoring in hard metal industry, Int J Adv Manuf Technol. 
(2020). https://doi.org/10.1007/s00170-020-06173-1. 

[90] P. Charalampous, I. Kostavelis, T. Kontodina, D. Tzovaras, Learning-based error modeling 
in FDM 3D printing process, Rapid Prototyping Journal. ahead-of-print (2021). 
https://doi.org/10.1108/RPJ-03-2020-0046. 

[91] The digitalization of the manufacturing industry, Visual Components. (2015). 
https://www.visualcomponents.com/resources/articles/digitalization-manufacturing-
industry/. 



 

146 

[92] H. Zhang, G. Zhang, Q. Yan, Digital twin-driven cyber-physical production system towards 
smart shop-floor, J Ambient Intell Human Comput. 10 (2019) 4439–4453. 
https://doi.org/10.1007/s12652-018-1125-4. 

[93] Y. Lu, X. Xu, Resource virtualization: A core technology for developing cyber-physical 
production systems, Journal of Manufacturing Systems. 47 (2018) 128–140. 
https://doi.org/10.1016/j.jmsy.2018.05.003. 

[94] J. Vachálek, L. Bartalský, O. Rovný, D. Šišmišová, M. Morháč, M. Lokšík, The digital twin of 
an industrial production line within the industry 4.0 concept, in: 2017 21st International 
Conference on Process Control (PC), 2017: pp. 258–262. 
https://doi.org/10.1109/PC.2017.7976223. 

[95] F. Jaensch, A. Csiszar, C. Scheifele, A. Verl, Digital Twins of Manufacturing Systems as a Base 
for Machine Learning, in: 2018 25th International Conference on Mechatronics and 
Machine Vision in Practice (M2VIP), 2018: pp. 1–6. 
https://doi.org/10.1109/M2VIP.2018.8600844. 

[96] J. Wang, L. Ye, R.X. Gao, C. Li, L. Zhang, Digital Twin for rotating machinery fault diagnosis 
in smart manufacturing, International Journal of Production Research. 57 (2019) 3920–
3934. https://doi.org/10.1080/00207543.2018.1552032. 

[97] Y. Xu, Y. Sun, X. Liu, Y. Zheng, A Digital-Twin-Assisted Fault Diagnosis Using Deep Transfer 
Learning, IEEE Access. 7 (2019) 19990–19999. 
https://doi.org/10.1109/ACCESS.2018.2890566. 

[98] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali, R. Harik, A digital twin to 
train deep reinforcement learning agent for smart manufacturing plants: Environment, 
interfaces and intelligence, Journal of Manufacturing Systems. (2020). 
https://doi.org/10.1016/j.jmsy.2020.06.012. 

[99] Q. Wang, W. Jiao, Y. Zhang, Deep learning-empowered digital twin for visualized weld joint 
growth monitoring and penetration control, Journal of Manufacturing Systems. 57 (2020) 
429–439. https://doi.org/10.1016/j.jmsy.2020.10.002. 

[100] W. Booyse, D.N. Wilke, S. Heyns, Deep digital twins for detection, diagnostics and 
prognostics, Mechanical Systems and Signal Processing. 140 (2020) 106612. 
https://doi.org/10.1016/j.ymssp.2019.106612. 

[101] P. Franciosa, M. Sokolov, S. Sinha, T. Sun, D. Ceglarek, Deep learning enhanced digital twin 
for Closed-Loop In-Process quality improvement, CIRP Annals. 69 (2020) 369–372. 
https://doi.org/10.1016/j.cirp.2020.04.110. 

[102] M.A. Ali, Q. Guan, R. Umer, W.J. Cantwell, T. Zhang, Deep learning based semantic 
segmentation of µCT images for creating digital material twins of fibrous reinforcements, 
Composites Part A: Applied Science and Manufacturing. 139 (2020) 106131. 
https://doi.org/10.1016/j.compositesa.2020.106131. 

[103] S. Chakraborty, S. Adhikari, Machine learning based digital twin for dynamical systems with 
multiple time-scales, Computers & Structures. 243 (2021) 106410. 
https://doi.org/10.1016/j.compstruc.2020.106410. 

[104] T.R. Wanasinghe, R.G. Gosine, L.A. James, G.K.I. Mann, O. de Silva, P.J. Warrian, The Internet 
of Things in the Oil and Gas Industry: A Systematic Review, IEEE Internet of Things Journal. 
7 (2020) 8654–8673. https://doi.org/10.1109/JIOT.2020.2995617. 

[105] P. Ambika, Machine learning and deep learning algorithms on the Industrial Internet of 
Things (IIoT), in: Advances in Computers, Elsevier, 2020: pp. 321–338. 
https://doi.org/10.1016/bs.adcom.2019.10.007. 



 

147 

[106] J. Pushpa, S.A. Kalyani, The fog computing/edge computing to leverage Digital Twin, in: 
Advances in Computers, Elsevier, 2020: pp. 51–77. 
https://doi.org/10.1016/bs.adcom.2019.09.003. 

[107] V. Kamath, J. Morgan, M.I. Ali, Industrial IoT and Digital Twins for a Smart Factory : An open 
source toolkit for application design and benchmarking, in: 2020 Global Internet of Things 
Summit (GIoTS), 2020: pp. 1–6. https://doi.org/10.1109/GIOTS49054.2020.9119497. 

[108] T.E.H. Project, Eclipse Hono, Eclipse Hono&trade; (n.d.). https://www.eclipse.org/hono/ 
(accessed February 13, 2021). 

[109] Eclipse Ditto • open source framework for digital twins in the IoT, (n.d.). 
https://www.eclipse.org/ditto/ (accessed February 13, 2021). 

[110] Apache Kafka, Apache Kafka. (n.d.). https://kafka.apache.org/ (accessed February 13, 
2021). 

[111] InfluxDB: Purpose-Built Open Source Time Series Database, InfluxData. (n.d.). 
https://www.influxdata.com/ (accessed February 13, 2021). 

[112] Grafana: The open observability platform, Grafana Labs. (n.d.). https://grafana.com/ 
(accessed February 13, 2021). 

[113] P. Patel, pankeshpatel/SWoTSuite, 2017. https://github.com/pankeshpatel/SWoTSuite 
(accessed February 14, 2021). 

[114] H.F. Atlam, M.A. Azad, A.G. Alzahrani, G. Wills, A Review of Blockchain in Internet of Things 
and AI, BDCC. 4 (2020) 28. https://doi.org/10.3390/bdcc4040028. 

[115] P. Warden, D. Situnayake, TinyML, (n.d.). 
https://www.oreilly.com/library/view/tinyml/9781492052036/. 

[116] TensorFlow Lite | ML for Mobile and Edge Devices, (n.d.). https://www.tensorflow.org/lite. 
[117] Arduino Nano 33 BLE Sense, (n.d.). https://store.arduino.cc/arduino-nano-33-ble-sense. 
[118] Arduino Nano 33 IoT, (n.d.). https://store.arduino.cc/arduino-nano-33-iot-with-headers. 
[119] SparkFun Edge Development Board, (n.d.). https://www.sparkfun.com/products/15170. 
[120] S. Rathore, B. Wook Kwon, J.H. Park, BlockSecIoTNet: Blockchain-based decentralized 

security architecture for IoT network, Journal of Network and Computer Applications. 143 
(2019) 167–177. https://doi.org/10.1016/j.jnca.2019.06.019. 

[121] S.K. Singh, S. Rathore, J.H. Park, BlockIoTIntelligence: A Blockchain-enabled Intelligent IoT 
Architecture with Artificial Intelligence, Future Generation Computer Systems. 110 (2020) 
721–743. https://doi.org/10.1016/j.future.2019.09.002. 

[122] MicroPython - Python for microcontrollers, (n.d.). http://micropython.org/. 
[123] F. Longo, L. Nicoletti, A. Padovano, Ubiquitous knowledge empowers the Smart Factory: 

The impacts of a Service-oriented Digital Twin on enterprises’ performance, Annual 
Reviews in Control. 47 (2019) 221–236. https://doi.org/10.1016/j.arcontrol.2019.01.001. 

[124] A. Banerjee, R. Dalal, S. Mittal, K.P. Joshi, Generating Digital Twin Models using Knowledge 
Graphs for Industrial Production Lines, in: Proceedings of the 2017 ACM on Web Science 
Conference, ACM, Troy New York USA, 2017: pp. 425–430. 
https://doi.org/10.1145/3091478.3162383. 

[125] Y.-R. Shiue, K.-C. Lee, C.-T. Su, Real-time scheduling for a smart factory using a 
reinforcement learning approach, Computers & Industrial Engineering. 125 (2018) 604–
614. https://doi.org/10.1016/j.cie.2018.03.039. 

[126] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz, P. 
Pastor, K. Konolige, S. Levine, V. Vanhoucke, Using Simulation and Domain Adaptation to 
Improve Efficiency of Deep Robotic Grasping, in: 2018 IEEE International Conference on 



 

148 

Robotics and Automation (ICRA), 2018: pp. 4243–4250. 
https://doi.org/10.1109/ICRA.2018.8460875. 

[127] R. Krug, T. Stoyanov, V. Tincani, H. Andreasson, R. Mosberger, G. Fantoni, A.J. Lilienthal, The 
Next Step in Robot Commissioning: Autonomous Picking and Palletizing, IEEE Robotics and 
Automation Letters. 1 (2016) 546–553. https://doi.org/10.1109/LRA.2016.2519944. 

[128] Y. Gao, J. Lin, J. Xie, Z. Ning, A Real-Time Defect Detection Method for Digital Signal 
Processing of Industrial Inspection Applications, IEEE Transactions on Industrial 
Informatics. 17 (2021) 3450–3459. https://doi.org/10.1109/TII.2020.3013277. 

[129] H.-J. Yoo, Deep Convolution Neural Networks in Computer Vision: a Review, IEIE 
Transactions on Smart Processing and Computing. 4 (2015) 35–43. 
https://doi.org/10.5573/IEIESPC.2015.4.1.035. 

[130] R. Shanmugamani, M. Sadique, B. Ramamoorthy, Detection and classification of surface 
defects of gun barrels using computer vision and machine learning, Measurement. 60 
(2015) 222–230. https://doi.org/10.1016/j.measurement.2014.10.009. 

[131] P. Ondruska, I. Posner, Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural 
Networks, ArXiv:1602.00991 [Cs]. (2016). http://arxiv.org/abs/1602.00991 (accessed May 
15, 2021). 

[132] S.M.S. Islam, S. Rahman, Md.M. Rahman, E.K. Dey, M. Shoyaib, Application of deep learning 
to computer vision: A comprehensive study, in: 2016 5th International Conference on 
Informatics, Electronics and Vision (ICIEV), IEEE, Dhaka, Bangladesh, 2016: pp. 592–597. 
https://doi.org/10.1109/ICIEV.2016.7760071. 

[133] A. Schwartzman, M. Kagan, L. Mackey, B. Nachman, L. De Oliveira, Image Processing, 
Computer Vision, and Deep Learning: new approaches to the analysis and physics 
interpretation of LHC events, J. Phys.: Conf. Ser. 762 (2016) 012035. 
https://doi.org/10.1088/1742-6596/762/1/012035. 

[134] B.L. DeCost, H. Jain, A.D. Rollett, E.A. Holm, Computer Vision and Machine Learning for 
Autonomous Characterization of AM Powder Feedstocks, JOM. 69 (2017) 456–465. 
https://doi.org/10.1007/s11837-016-2226-1. 

[135] D. Mery, C. Arteta, Automatic Defect Recognition in X-Ray Testing Using Computer Vision, 
in: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, Santa 
Rosa, CA, USA, 2017: pp. 1026–1035. https://doi.org/10.1109/WACV.2017.119. 

[136] M.T. García-Ordás, E. Alegre, V. González-Castro, R. Alaiz-Rodríguez, A computer vision 
approach to analyze and classify tool wear level in milling processes using shape 
descriptors and machine learning techniques, Int J Adv Manuf Technol. 90 (2017) 1947–
1961. https://doi.org/10.1007/s00170-016-9541-0. 

[137] Q. Wu, Y. Liu, Q. Li, S. Jin, F. Li, The application of deep learning in computer vision, in: 2017 
Chinese Automation Congress (CAC), IEEE, Jinan, 2017: pp. 6522–6527. 
https://doi.org/10.1109/CAC.2017.8243952. 

[138] V. Vakharia, M.B. Kiran, N.J. Dave, U. Kagathara, Feature extraction and classification of 
machined component texture images using wavelet and artificial intelligence techniques, 
in: 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), 
IEEE, Prague, Czech Republic, 2017: pp. 140–144. 
https://doi.org/10.1109/ICMAE.2017.8038631. 

[139] A. Birlutiu, A. Burlacu, M. Kadar, D. Onita, Defect Detection in Porcelain Industry Based on 
Deep Learning Techniques, in: 2017 19th International Symposium on Symbolic and 



 

149 

Numeric Algorithms for Scientific Computing (SYNASC), 2017: pp. 263–270. 
https://doi.org/10.1109/SYNASC.2017.00049. 

[140] M. Maggipinto, M. Terzi, C. Masiero, A. Beghi, G.A. Susto, A Computer Vision-Inspired Deep 
Learning Architecture for Virtual Metrology Modeling With 2-Dimensional Data, IEEE Trans. 
Semicond. Manufact. 31 (2018) 376–384. https://doi.org/10.1109/TSM.2018.2849206. 

[141] R.L. Silva, M. Rudek, A.L. Szejka, O.C. Junior, Machine Vision Systems for Industrial Quality 
Control Inspections, in: P. Chiabert, A. Bouras, F. Noël, J. Ríos (Eds.), Product Lifecycle 
Management to Support Industry 4.0, Springer International Publishing, Cham, 2018: pp. 
631–641. https://doi.org/10.1007/978-3-030-01614-2_58. 

[142] F. Nguyen, S.M. Barhli, D.P. Muñoz, D. Ryckelynck, Computer Vision with Error Estimation 
for Reduced Order Modeling of Macroscopic Mechanical Tests, Complexity. 2018 (2018) 1–
10. https://doi.org/10.1155/2018/3791543. 

[143] Janis Arents, R. Cacurs, M. Greitans, Integration of Computervision and Artificial 
Intelligence Subsystems with Robot Operating System Based Motion Planning for 
Industrial Robots, Aut. Control Comp. Sci. 52 (2018) 392–401. 
https://doi.org/10.3103/S0146411618050024. 

[144] S. Feng, C. Zuo, Q. Chen, High-speed 3D measurements at 20,000Hz with deep 
convolutional neural networks, in: B. Chen, S. Han, T. Yoshizawa, S. Zhang (Eds.), Optical 
Metrology and Inspection for Industrial Applications VI, SPIE, Hangzhou, China, 2019: p. 
37. https://doi.org/10.1117/12.2537914. 

[145] C. Liu, R. Wang, Z. Kong, S. Babu, Chase, Joslin, J. Ferguson, Real-time 3D Surface 
Measurement in Additive Manufacturing Using Deep Learning, (2019). /paper/Real-time-
3D-Surface-Measurement-in-Additive-Using-Liu-
Wang/bb52dff7f86e1052022aa7e4b2ea19f03af4d793. 

[146] K. He, Q. Zhang, Y. Hong, Profile monitoring based quality control method for fused 
deposition modeling process, J Intell Manuf. 30 (2019) 947–958. 
https://doi.org/10.1007/s10845-018-1424-9. 

[147] O. Kwon, H.G. Kim, M.J. Ham, W. Kim, G.-H. Kim, J.-H. Cho, N.I. Kim, K. Kim, A deep neural 
network for classification of melt-pool images in metal additive manufacturing, J Intell 
Manuf. 31 (2020) 375–386. https://doi.org/10.1007/s10845-018-1451-6. 

[148] X. Yin, X. Fan, J. Wang, R. Liu, Q. Wang, An Automatic Interaction Method Using Part 
Recognition Based on Deep Network for Augmented Reality Assembly Guidance, in: 
American Society of Mechanical Engineers Digital Collection, 2018. 
https://doi.org/10.1115/DETC2018-85810. 

[149] A.V. Bernstein, E.V. Burnaev, O.N. Kachan, Reinforcement Learning for Computer Vision 
and Robot Navigation, in: P. Perner (Ed.), Machine Learning and Data Mining in Pattern 
Recognition, Springer International Publishing, Cham, 2018: pp. 258–272. 
https://doi.org/10.1007/978-3-319-96133-0_20. 

[150] K.-B. Park, M. Kim, S.H. Choi, J.Y. Lee, Deep learning-based smart task assistance in 
wearable augmented reality, Robotics and Computer-Integrated Manufacturing. 63 (2020) 
101887. https://doi.org/10.1016/j.rcim.2019.101887. 

[151] Microsoft HoloLens | Mixed Reality Technology for Business, (n.d.). 
https://www.microsoft.com/en-us/hololens. 

[152] K.-B. Park, S.H. Choi, M. Kim, J.Y. Lee, Deep learning-based mobile augmented reality for 
task assistance using 3D spatial mapping and snapshot-based RGB-D data, Computers & 
Industrial Engineering. 146 (2020) 106585. https://doi.org/10.1016/j.cie.2020.106585. 



 

150 

[153] A. Rabinovich, T.J. Malisiewicz, D. DeTone, Augmented reality display device with deep 
learning sensors, US10733447B2, 2020. 
https://patents.google.com/patent/US10733447B2/en. 

[154] X. Wang, A.W.W. Yew, S.K. Ong, A.Y.C. Nee, Enhancing smart shop floor management with 
ubiquitous augmented reality, International Journal of Production Research. 58 (2020) 
2352–2367. https://doi.org/10.1080/00207543.2019.1629667. 

[155] G.K. Upadhyay, D. Aggarwal, A. Bansal, G. Bhola, Augmented Reality and Machine Learning 
based Product Identification in Retail using Vuforia and MobileNets, in: 2020 International 
Conference on Inventive Computation Technologies (ICICT), 2020: pp. 479–485. 
https://doi.org/10.1109/ICICT48043.2020.9112490. 

[156] Z.-H. Lai, W. Tao, M.C. Leu, Z. Yin, Smart augmented reality instructional system for 
mechanical assembly towards worker-centered intelligent manufacturing, Journal of 
Manufacturing Systems. 55 (2020) 69–81. https://doi.org/10.1016/j.jmsy.2020.02.010. 

[157] D. Lipiński, M. Majewski, Intelligent Monitoring and Optimization of Micro- and Nano-
Machining Processes, in: J. Awrejcewicz, R. Szewczyk, M. Trojnacki, M. Kaliczyńska (Eds.), 
Mechatronics - Ideas for Industrial Application, Springer International Publishing, Cham, 
2015: pp. 101–110. https://doi.org/10.1007/978-3-319-10990-9_10. 

[158] D. Devarasiddappa, J. George, M. Chandrasekaran, N. Teyi, Application of Artificial 
Intelligence Approach in Modeling Surface Quality of Aerospace Alloys in WEDM Process, 
Procedia Technology. 25 (2016) 1199–1208. https://doi.org/10.1016/j.protcy.2016.08.239. 

[159] M.R.A. Purnomo, I.H.S. Dewi, A manufacturing quality assessment model based-on two 
stages interval type-2 fuzzy logic, IOP Conf. Ser.: Mater. Sci. Eng. 105 (2016) 012044. 
https://doi.org/10.1088/1757-899X/105/1/012044. 

[160] L. Scime, J. Beuth, A multi-scale convolutional neural network for autonomous anomaly 
detection and classification in a laser powder bed fusion additive manufacturing process, 
Additive Manufacturing. 24 (2018) 273–286. https://doi.org/10.1016/j.addma.2018.09.034. 

[161] T. Vafeiadis, N. Dimitriou, D. Ioannidis, T. Wotherspoon, G. Tinker, D. Tzovaras, A 
framework for inspection of dies attachment on PCB utilizing machine learning 
techniques, Journal of Management Analytics. 5 (2018) 81–94. 
https://doi.org/10.1080/23270012.2018.1434425. 

[162] C.-Y. Lin, C.-H. Chen, C.-Y. Yang, F. Akhyar, C.-Y. Hsu, H.-F. Ng, Cascading Convolutional 
Neural Network for Steel Surface Defect Detection, in: T. Ahram (Ed.), Advances in Artificial 
Intelligence, Software and Systems Engineering, Springer International Publishing, Cham, 
2020: pp. 202–212. https://doi.org/10.1007/978-3-030-20454-9_20. 

[163] H. Lin, B. Li, X. Wang, Y. Shu, S. Niu, Automated defect inspection of LED chip using deep 
convolutional neural network, J Intell Manuf. 30 (2019) 2525–2534. 
https://doi.org/10.1007/s10845-018-1415-x. 

[164] M. Wiciak-Pikula, A. Felusiak, P. Twardowski, Artificial Neural Network models for tool wear 
prediction during Aluminium Matrix Composite milling, in: 2020 IEEE 7th International 
Workshop on Metrology for AeroSpace (MetroAeroSpace), 2020: pp. 255–259. 
https://doi.org/10.1109/MetroAeroSpace48742.2020.9160064. 

[165] A. Spruck, J. Seiler, M. Roll, T. Dudziak, J. Eckstein, A. Kaup, Quality Assurance of Weld Seams 
Using Laser Triangulation Imaging and Deep Neural Networks, in: 2020 IEEE International 
Workshop on Metrology for Industry 4.0 IoT, 2020: pp. 407–412. 
https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138205. 



 

151 

[166] M. Meiners, A. Mayr, M. Thomsen, J. Franke, Application of Machine Learning for Product 
Batch Oriented Control of Production Processes, Procedia CIRP. 93 (2020) 431–436. 
https://doi.org/10.1016/j.procir.2020.04.006. 

[167] T. Brito, J. Queiroz, L. Piardi, L.A. Fernandes, J. Lima, P. Leitão, A Machine Learning 
Approach for Collaborative Robot Smart Manufacturing Inspection for Quality Control 
Systems, Procedia Manufacturing. 51 (2020) 11–18. 
https://doi.org/10.1016/j.promfg.2020.10.003. 

[168] G. San-Payo, J.C. Ferreira, P. Santos, A.L. Martins, Machine learning for quality control 
system, J Ambient Intell Human Comput. 11 (2020) 4491–4500. 
https://doi.org/10.1007/s12652-019-01640-4. 

[169] N. Dimitriou, L. Leontaris, T. Vafeiadis, D. Ioannidis, T. Wotherspoon, G. Tinker, D. Tzovaras, 
Fault Diagnosis in Microelectronics Attachment Via Deep Learning Analysis of 3-D Laser 
Scans, IEEE Transactions on Industrial Electronics. 67 (2020) 5748–5757. 
https://doi.org/10.1109/TIE.2019.2931220. 

[170] W. Tiddens, J. Braaksma, T. Tinga, Exploring predictive maintenance applications in 
industry, Journal of Quality in Maintenance Engineering. ahead-of-print (2020). 
https://doi.org/10.1108/JQME-05-2020-0029. 

[171] P. Bangalore, L.B. Tjernberg, An Artificial Neural Network Approach for Early Fault 
Detection of Gearbox Bearings, IEEE Trans. Smart Grid. 6 (2015) 980–987. 
https://doi.org/10.1109/TSG.2014.2386305. 

[172] R. Langone, C. Alzate, B. De Ketelaere, J. Vlasselaer, W. Meert, J.A.K. Suykens, LS-SVM based 
spectral clustering and regression for predicting maintenance of industrial machines, 
Engineering Applications of Artificial Intelligence. 37 (2015) 268–278. 
https://doi.org/10.1016/j.engappai.2014.09.008. 

[173] A. Abu-Samah, M.K. Shahzad, E. Zamai, A.B. Said, Failure Prediction Methodology for 
Improved Proactive Maintenance using Bayesian Approach ★ ★The authors gratefully 
acknowledge STMicroelectronics for their support and provision of data for TT case study. 
The authors also acknowledge European project INTEGRATE and region RhoneAlpes for 
ongoing Research., IFAC-PapersOnLine. 48 (2015) 844–851. 
https://doi.org/10.1016/j.ifacol.2015.09.632. 

[174] M. Confalonieri, A. Barni, A. Valente, M. Cinus, P. Pedrazzoli, An AI based decision support 
system for preventive maintenance and production optimization in energy intensive 
manufacturing plants, in: 2015 IEEE International Conference on Engineering, Technology 
and Innovation/ International Technology Management Conference (ICE/ITMC), IEEE, 
Belfast, United Kingdom, 2015: pp. 1–8. https://doi.org/10.1109/ICE.2015.7438673. 

[175] D. Wu, C. Jennings, J. Terpenny, S. Kumara, Cloud-based machine learning for predictive 
analytics: Tool wear prediction in milling, in: 2016 IEEE International Conference on Big 
Data (Big Data), IEEE, Washington DC,USA, 2016: pp. 2062–2069. 
https://doi.org/10.1109/BigData.2016.7840831. 

[176] J. Krenek, K. Kuca, P. Blazek, O. Krejcar, D. Jun, Application of Artificial Neural Networks in 
Condition Based Predictive Maintenance, in: D. Król, L. Madeyski, N.T. Nguyen (Eds.), 
Recent Developments in Intelligent Information and Database Systems, Springer 
International Publishing, Cham, 2016: pp. 75–86. https://doi.org/10.1007/978-3-319-
31277-4_7. 

[177] A. Patwardhan, A.K. Verma, U. Kumar, A Survey on Predictive Maintenance Through Big 
Data, in: U. Kumar, A. Ahmadi, A.K. Verma, P. Varde (Eds.), Current Trends in Reliability, 



 

152 

Availability, Maintainability and Safety, Springer International Publishing, Cham, 2016: pp. 
437–445. https://doi.org/10.1007/978-3-319-23597-4_31. 

[178] H. Raoslash;dseth, P. Schjaoslash;lberg, Data-driven Predictive Maintenance for Green 
Manufacturing, in: Proceedings of the 6th International Workshop of Advanced 
Manufacturing and Automation, Atlantis Press, Manchester, UK, 2016. 
https://doi.org/10.2991/iwama-16.2016.7. 

[179] A. Ben Said, M.-K. Shahzad, E. Zamai, S. Hubac, M. Tollenaere, Towards proactive 
maintenance actions scheduling in the Semiconductor Industry (SI) using Bayesian 
approach, IFAC-PapersOnLine. 49 (2016) 544–549. 
https://doi.org/10.1016/j.ifacol.2016.07.692. 

[180] Y. Ali, S. Al-Obaidi, R. Rahman, R. Hamzah, Acoustic Emission and Artificial Intelligent 
Methods in Condition Monitoring of Rotating Machine – A Review, (2016). 

[181] Z. Li, Y. Wang, K.-S. Wang, Intelligent predictive maintenance for fault diagnosis and 
prognosis in machine centers: Industry 4.0 scenario, Adv. Manuf. 5 (2017) 377–387. 
https://doi.org/10.1007/s40436-017-0203-8. 

[182] K. Wang, Y. Wang, How AI Affects the Future Predictive Maintenance: A Primer of Deep 
Learning, in: K. Wang, Y. Wang, J.O. Strandhagen, T. Yu (Eds.), Advanced Manufacturing and 
Automation VII, Springer Singapore, Singapore, 2018: pp. 1–9. https://doi.org/10.1007/978-
981-10-5768-7_1. 

[183] S.-Y. Chuang, N. Sahoo, H.-W. Lin, Y.-H. Chang, Predictive Maintenance with Sensor Data 
Analytics on a Raspberry Pi-Based Experimental Platform, Sensors. 19 (2019) 3884. 
https://doi.org/10.3390/s19183884. 

[184] G. Scalabrini Sampaio, A.R. de A. Vallim Filho, L. Santos da Silva, L. Augusto da Silva, 
Prediction of Motor Failure Time Using An Artificial Neural Network, Sensors. 19 (2019) 
4342. https://doi.org/10.3390/s19194342. 

[185] R. Pinto, T. Cerquitelli, Robot fault detection and remaining life estimation for predictive 
maintenance, Procedia Computer Science. 151 (2019) 709–716. 
https://doi.org/10.1016/j.procs.2019.04.094. 

[186] Z.M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, B. Safaei, Machine 
Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 
4.0, Sustainability. 12 (2020) 8211. https://doi.org/10.3390/su12198211. 

[187] I. Daniyan, K. Mpofu, M. Oyesola, B. Ramatsetse, A. Adeodu, Artificial intelligence for 
predictive maintenance in the railcar learning factories, Procedia Manufacturing. 45 (2020) 
13–18. https://doi.org/10.1016/j.promfg.2020.04.032. 

[188] D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of deep convolutional neural network 
architectures for automated feature extraction in industrial inspection, CIRP Annals. 65 
(2016) 417–420. https://doi.org/10.1016/j.cirp.2016.04.072. 

[189] W. Sun, R. Zhao, R. Yan, S. Shao, X. Chen, Convolutional Discriminative Feature Learning 
for Induction Motor Fault Diagnosis, IEEE Trans. Ind. Inf. 13 (2017) 1350–1359. 
https://doi.org/10.1109/TII.2017.2672988. 

[190] L. Wen, X. Li, L. Gao, Y. Zhang, A New Convolutional Neural Network-Based Data-Driven 
Fault Diagnosis Method, IEEE Trans. Ind. Electron. 65 (2018) 5990–5998. 
https://doi.org/10.1109/TIE.2017.2774777. 

[191] A. Khdoudi, T. Masrour, Prediction of Industrial Process Parameters using Artificial 
Intelligence Algorithms, 2019. 



 

153 

[192] G. Tello, O.Y. Al-Jarrah, P.D. Yoo, Y. Al-Hammadi, S. Muhaidat, U. Lee, Deep-Structured 
Machine Learning Model for the Recognition of Mixed-Defect Patterns in Semiconductor 
Fabrication Processes, IEEE Trans. Semicond. Manufact. 31 (2018) 315–322. 
https://doi.org/10.1109/TSM.2018.2825482. 

[193] L. Wen, X. Li, L. Gao, A New Two-Level Hierarchical Diagnosis Network Based on 
Convolutional Neural Network, IEEE Trans. Instrum. Meas. 69 (2020) 330–338. 
https://doi.org/10.1109/TIM.2019.2896370. 

[194] S. Shao, S. McAleer, R. Yan, P. Baldi, Highly Accurate Machine Fault Diagnosis Using Deep 
Transfer Learning, IEEE Trans. Ind. Inf. 15 (2019) 2446–2455. 
https://doi.org/10.1109/TII.2018.2864759. 

[195] Z. Huang, V.C. Angadi, M. Danishvar, A. Mousavi, M. Li, Zero Defect Manufacturing of 
Microsemiconductors – An Application of Machine Learning and Artificial Intelligence, in: 
2018 5th International Conference on Systems and Informatics (ICSAI), IEEE, Nanjing, 2018: 
pp. 449–454. https://doi.org/10.1109/ICSAI.2018.8599292. 

[196] N. Dimitriou, L. Leontaris, T. Vafeiadis, D. Ioannidis, T. Wotherspoon, G. Tinker, D. Tzovaras, 
A Deep Learning framework for simulation and defect prediction applied in 
microelectronics, Simulation Modelling Practice and Theory. 100 (2020) 102063. 
https://doi.org/10.1016/j.simpat.2019.102063. 

[197] S. Dengler, S. Lahriri, E. Trunzer, B. Vogel-Heuser, Applied machine learning for a zero 
defect tolerance system in the automated assembly of pharmaceutical devices, Decision 
Support Systems. (2021) 113540. https://doi.org/10.1016/j.dss.2021.113540. 

[198] S.K. Ong, M.L. Yuan, A.Y.C. Nee, Augmented reality applications in manufacturing: a survey, 
International Journal of Production Research. 46 (2008) 2707–2742. 
https://doi.org/10.1080/00207540601064773. 

[199] M. Abraham, M. Annunziata, Augmented reality is already improving worker performance, 
2017. 

[200] E. Bottani, G. Vignali, Augmented reality technology in the manufacturing industry: A 
review of the last decade, IISE Transactions. 51 (2019) 284–310. 
https://doi.org/10.1080/24725854.2018.1493244. 

[201] S.K. Ong, Y. Pang, A.Y.C. Nee, Augmented Reality Aided Assembly Design and Planning, 
CIRP Annals. 56 (2007) 49–52. https://doi.org/10.1016/j.cirp.2007.05.014. 

[202] S.K. Ong, Z.B. Wang, Augmented assembly technologies based on 3D bare-hand 
interaction, CIRP Annals. 60 (2011) 1–4. https://doi.org/10.1016/j.cirp.2011.03.001. 

[203] B. Odenthal, M.Ph. Mayer, W. Kabuss, C.M. Schlick, Design and evaluation of an 
Augmented Vision System for human-robot cooperation in cognitively automated 
assembly cells, in: International Multi-Conference on Systems, Sygnals & Devices, IEEE, 
Chemnitz, Germany, 2012: pp. 1–6. https://doi.org/10.1109/SSD.2012.6197931. 

[204] G. Michalos, P. Karagiannis, S. Makris, Ö. Tokçalar, G. Chryssolouris, Augmented Reality 
(AR) Applications for Supporting Human-robot Interactive Cooperation, Procedia CIRP. 41 
(2016) 370–375. https://doi.org/10.1016/j.procir.2015.12.005. 

[205] S. Makris, P. Karagiannis, S. Koukas, A.-S. Matthaiakis, Augmented reality system for 
operator support in human–robot collaborative assembly, CIRP Annals. 65 (2016) 61–64. 
https://doi.org/10.1016/j.cirp.2016.04.038. 

[206] D. Tatić, B. Tešić, The application of augmented reality technologies for the improvement 
of occupational safety in an industrial environment, Computers in Industry. 85 (2017) 1–
10. https://doi.org/10.1016/j.compind.2016.11.004. 



 

154 

[207] A. Malik, H. Lhachemi, J. Ploennigs, A. Ba, R. Shorten, An Application of 3D Model 
Reconstruction and Augmented Reality for Real-Time Monitoring of Additive 
Manufacturing, Procedia CIRP. 81 (2019) 346–351. 
https://doi.org/10.1016/j.procir.2019.03.060. 

[208] Z. Zhu, C. Liu, X. Xu, Visualisation of the Digital Twin data in manufacturing by using 
Augmented Reality, Procedia CIRP. 81 (2019) 898–903. 
https://doi.org/10.1016/j.procir.2019.03.223. 

[209] H. Raabe, O. Myklebust, R. Eleftheriadis, Vision Based Quality Control and Maintenance in 
High Volume Production by Use of Zero Defect Strategies, in: K. Wang, Y. Wang, J.O. 
Strandhagen, T. Yu (Eds.), Advanced Manufacturing and Automation VII, Springer 
Singapore, Singapore, 2018: pp. 405–412. https://doi.org/10.1007/978-981-10-5768-7_43. 

[210] G. Reinhart, C. Patron, Integrating Augmented Reality in the Assembly Domain - 
Fundamentals, Benefits and Applications, CIRP Annals. 52 (2003) 5–8. 
https://doi.org/10.1016/S0007-8506(07)60517-4. 

[211] S. Makris, G. Pintzos, L. Rentzos, G. Chryssolouris, Assembly support using AR technology 
based on automatic sequence generation, CIRP Annals. 62 (2013) 9–12. 
https://doi.org/10.1016/j.cirp.2013.03.095. 

[212] T. Tolio, G. Copani, W. Terkaj, eds., Factories of the Future: The Italian Flagship Initiative, 
Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-319-94358-
9. 

[213] M.F. Alam, S. Katsikas, O. Beltramello, S. Hadjiefthymiades, Augmented and virtual reality 
based monitoring and safety system: A prototype IoT platform, Journal of Network and 
Computer Applications. 89 (2017) 109–119. https://doi.org/10.1016/j.jnca.2017.03.022. 

[214] S.C.-Y. Lu, M. Shpitalni, R. Gadh, Virtual and Augmented Reality Technologies for Product 
Realization, CIRP Annals. 48 (1999) 471–495. https://doi.org/10.1016/S0007-
8506(07)63229-6. 

[215] M.C. Leu, H.A. ElMaraghy, A.Y.C. Nee, S.K. Ong, M. Lanzetta, M. Putz, W. Zhu, A. Bernard, 
CAD model based virtual assembly simulation, planning and training, CIRP Annals. 62 
(2013) 799–822. https://doi.org/10.1016/j.cirp.2013.05.005. 

[216] M. Tsourma, S. Zikos, G. Albanis, K.C. Apostolakis, E.E. Lithoxoidou, A. Drosou, D. Zarpalas, 
P. Daras, D. Tzovaras, Gamification concepts for leveraging knowledge sharing in Industry 
4.0, IJSG. 6 (2019) 75–87. https://doi.org/10.17083/ijsg.v6i2.273. 

[217] S. Aromaa, M. Liinasuo, E. Kaasinen, M. Bojko, F. Schmalfuß, K.C. Apostolakis, D. Zarpalas, 
P. Daras, C. Özturk, M. Boubekeuer, User Evaluation of Industry 4.0 Concepts for Worker 
Engagement, in: T. Ahram, W. Karwowski, R. Taiar (Eds.), Human Systems Engineering and 
Design, Springer International Publishing, Cham, 2019: pp. 34–40. 
https://doi.org/10.1007/978-3-030-02053-8_6. 

[218] D.K. Baroroh, C.-H. Chu, L. Wang, Systematic literature review on augmented reality in 
smart manufacturing: Collaboration between human and computational intelligence, 
Journal of Manufacturing Systems. (2020) S0278612520301862. 
https://doi.org/10.1016/j.jmsy.2020.10.017. 

[219] B. Shneiderman, Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy, 
International Journal of Human–Computer Interaction. 36 (2020) 495–504. 
https://doi.org/10.1080/10447318.2020.1741118. 



 

155 

[220] G. Margetis, S. Ntoa, M. Antona, C. Stephanidis, Human-Centered Design of Artificial 
Intelligence, in: Salvendy, G., Karwowski, W. (Eds.). Handbook of Human Factors and 
Ergonomics, 5th Edition, Wiley., n.d. 

[221] A. Muñoz, X. Mahiques, J.E. Solanes, A. Martí, L. Gracia, J. Tornero, Mixed reality-based user 
interface for quality control inspection of car body surfaces, Journal of Manufacturing 
Systems. 53 (2019) 75–92. https://doi.org/10.1016/j.jmsy.2019.08.004. 

[222] M. Sesana, A. Moussa, Collaborative Augmented worker and Artificial Intelligence in Zero 
defect Manufacturing environment, MATEC Web Conf. 304 (2019) 04003. 
https://doi.org/10.1051/matecconf/201930404003. 

[223] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, 
Journal of Industrial Information Integration. 6 (2017) 1–10. 
https://doi.org/10.1016/j.jii.2017.04.005. 

[224] Sizing the prize, n.d. https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-
sizing-the-prize-report.pdf. 

[225] P. Brey, B. Lundgren, K. Macnish, M. Ryan, A. Andreou, L. Brooks, Tilimbe Jiya, R. Klar, D. 
Lanzareth, J. Maas, I. Oluoch, B. Stahl, D3.2 Guidelines for the development and the use of 
SIS, (2021). https://doi.org/10.21253/DMU.11316833.V3. 

[226] AI Ethics Guidelines Global Inventory, AlgorithmWatch. (n.d.). 
https://algorithmwatch.org/en/ai-ethics-guidelines-global-inventory. 

[227] Lisa Tambornino, Dirk Lanzerath, Rowena Rodrigues, David Wright, SIENNA D4.3: Survey 
of REC approaches and codes for Artificial Intelligence & Robotics, Zenodo, 2019. 
https://doi.org/10.5281/zenodo.4067990. 

[228] IEEE Ethics In Action in Autonomous and Intelligent Systems | IEEE SA, Ethics In Action | 
Ethically Aligned Design. (n.d.). https://ethicsinaction.ieee.org/. 

[229] G. Adamson, J.C. Havens, R. Chatila, Designing a Value-Driven Future for Ethical 
Autonomous and Intelligent Systems, Proceedings of the IEEE. 107 (2019) 518–525. 
https://doi.org/10.1109/JPROC.2018.2884923. 

[230] AI Principles, Future of Life Institute. (n.d.). https://futureoflife.org/ai-principles/. 
[231] L. Floridi, ed., The Onlife Manifesto: Being Human in a Hyperconnected Era, Springer 

International Publishing, 2015. https://doi.org/10.1007/978-3-319-04093-6. 
[232] V. Dignum, Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible 

Way, Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-30371-6. 
[233] L. Floridi, J. Cowls, M. Beltrametti, R. Chatila, P. Chazerand, V. Dignum, C. Luetge, R. 

Madelin, U. Pagallo, F. Rossi, B. Schafer, P. Valcke, E. Vayena, AI4People—An Ethical 
Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations, 
Minds & Machines. 28 (2018) 689–707. https://doi.org/10.1007/s11023-018-9482-5. 

[234] S. Tolmeijer, M. Kneer, C. Sarasua, M. Christen, A. Bernstein, Implementations in Machine 
Ethics: A Survey, ACM Comput. Surv. 53 (2021) 132:1-132:38. 
https://doi.org/10.1145/3419633. 

[235] Ethics guidelines for trustworthy AI | Shaping Europe’s digital future, (n.d.). https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. 

[236] M.W. Hoffmann, R. Drath, C. Ganz, Proposal for requirements on industrial AI solutions, 
in: J. Beyerer, A. Maier, O. Niggemann (Eds.), Machine Learning for Cyber Physical Systems, 
Springer, Berlin, Heidelberg, 2021: pp. 63–72. https://doi.org/10.1007/978-3-662-62746-
4_7. 



 

156 

[237] B. Mittelstadt, Principles alone cannot guarantee ethical AI, Nat Mach Intell. 1 (2019) 501–
507. https://doi.org/10.1038/s42256-019-0114-4. 

[238] P. Brey, K. Macnish, M. Ryan, Guidelines for the Ethical Development of AI and Big Data 
Systems: An Ethics by Design approach, (2020) 1039689 Bytes. 
https://doi.org/10.21253/DMU.12301322.V1. 

[239] Ethics by Design and Ethics of Use in AI and Robotics, n.d. https://sienna-
project.eu/digitalAssets/915/c_915554-l_1-k_sienna-ethics-by-design-and-ethics-of-
use.pdf. 

[240] P. Brey, B. Lundgren, K. Macnish, M. Ryan, A. Andreou, L. Brooks, T. Jiya, R. Klar, D. 
Lanzareth, J. Maas, I. Oluoch, B. Stahl, Guidelines for the Ethical Use of AI and Big Data 
Systems, 2020. 
https://figshare.dmu.ac.uk/articles/online_resource/Guidelines_for_the_Ethical_Use_of_AI
_and_Big_Data_Systems/12301331 (accessed April 24, 2021). 

[241] Expert group on AI | Shaping Europe’s digital future, (n.d.). https://digital-
strategy.ec.europa.eu/en/policies/expert-group-ai. 

[242] I. Ajunwa, K. Crawford, J. Schultz, Limitless Worker Surveillance, California Law Review. 105 
(2017). https://doi.org/10.15779/Z38BR8MF94. 

[243] J. Fjeld, N. Achten, H. Hilligoss, A. Nagy, M. Srikumar, Principled Artificial Intelligence: 
Mapping Consensus in Ethical and Rights-based Approaches to Principles for AI, (2020). 
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42160420. 

[244] Game-changing technologies: Transforming production and employment in Europe | 
Eurofound, (n.d.). https://www.eurofound.europa.eu/publications/report/2020/game-
changing-technologies-transforming-production-and-employment-in-europe (accessed 
May 5, 2021). 

[245] Guidelines on Automated individual decision-making and Profiling for the purposes of 
Regulation 2016/679, (n.d.). https://service.betterregulation.com/document/306193. 

[246] B. Törpel, A. Voss, M. Hartswood, R. Procter, Participatory Design: Issues and Approaches 
in Dynamic Constellations of Use, Design, and Research, in: M. Büscher, R. Slack, M. 
Rouncefield, R. Procter, M. Hartswood, A. Voss (Eds.), Configuring User-Designer Relations, 
Springer London, London, 2009: pp. 13–29. https://doi.org/10.1007/978-1-84628-925-5_2. 

[247] M.W. Hoffmann, R. Drath, C. Ganz, Proposal for requirements on industrial AI solutions, 
in: J. Beyerer, A. Maier, O. Niggemann (Eds.), Machine Learning for Cyber Physical Systems, 
Springer Berlin Heidelberg, Berlin, Heidelberg, 2021: pp. 63–72. 

[248] P. Jansen, P. Brey, SIENNA D4.4: Ethical Analysis of AI and Robotics Technologies, n.d. 
https://www.sienna-project.eu/digitalAssets/884/c_884668-l_1-k_d4.4_ethical-analysis--ai-
and-r--with-acknowledgements.pdf. 

[249] S. Wachter, B. Mittelstadt, A Right to Reasonable Inferences: Re-Thinking Data Protection 
Law in the Age of Big Data and AI, LawArXiv, 2018. https://doi.org/10.31228/osf.io/mu2kf. 

[250] S. Wachter, Normative Challenges of Identification in the Internet of Things: Privacy, 
Profiling, Discrimination, and the GDPR, Computer Law & Security Review. 34 (2018) 436–
449. https://doi.org/10.1016/j.clsr.2018.02.002. 

[251] J. Beyerer, A. Maier, O. Niggemann, eds., Machine Learning for Cyber Physical Systems: 
Selected papers from the International Conference ML4CPS 2020, Springer Vieweg, 2021. 
https://doi.org/10.1007/978-3-662-62746-4. 

[252] Human Rights in the Age of Artificial Intelligence, accessnow.org, n.d. 
https://www.accessnow.org/cms/assets/uploads/2018/11/AI-and-Human-Rights.pdf. 



 

157 

[253] A. Mantelero, AI and big data: a blueprint for a human rights, social and ethical impact 
assessment, Computer Law & Security Review. 34 (2018) 754. 

[254] I. Ajunwa, The “black box” at work, Big Data & Society. 7 (2020). 
https://doi.org/10.1177/2053951720938093. 

[255] Corporate social responsibility & Responsible business conduct, Internal Market, Industry, 
Entrepreneurship and SMEs - European Commission. (2016). 
https://ec.europa.eu/growth/industry/sustainability/corporate-social-responsibility_en. 

[256] COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE 
COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF 
THE REGIONS A renewed EU strategy 2011-14 for Corporate Social Responsibility, (n.d.). 
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0681. 

[257] K. Iatridis, D. Schroeder, Responsible Research and Innovation in Industry: The Case for 
Corporate Responsibility Tools, Springer International Publishing, 2016. 
https://doi.org/10.1007/978-3-319-21693-5. 

[258] A. Gurzawska, Responsible Innovation in Business: Perceptions, Evaluation Practices and 
Lessons Learnt, Sustainability. 13 (2021) 1826. https://doi.org/10.3390/su13041826. 

[259] R. von Schomberg, A Vision of Responsible Research and Innovation, in: R. Owen, J. 
Bessant, M. Heintz (Eds.), Responsible Innovation, John Wiley & Sons, Ltd, Chichester, UK, 
2013: pp. 51–74. https://doi.org/10.1002/9781118551424.ch3. 

[260] About RRI - RRI Tools, (n.d.). https://rri-tools.eu/en/about-rri. 
[261] A. Gurzawska, Strategic responsible innovation management (StRIM) : A new approach to 

responsible corporate innovation through strategic CSR, Routledge, 2020. 
https://doi.org/10.4324/9780429298998-6. 

[262] N.E. Bowie, A Kantian Theory of Meaningful Work, Journal of Business Ethics. 17 (1998) 
1083–1092. https://doi.org/10.1023/A:1006023500585. 

[263] R. Beadle, K. Knight, Virtue and Meaningful Work, Business Ethics Quarterly. 22 (2012) 433–
450. 

[264] C. Bailey, R. Yeoman, A. Madden, M. Thompson, G. Kerridge, A Review of the Empirical 
Literature on Meaningful Work: Progress and Research Agenda, Human Resource 
Development Review. 18 (2019) 83–113. https://doi.org/10.1177/1534484318804653. 

[265] J. Smids, S. Nyholm, H. Berkers, Robots in the Workplace: a Threat to—or Opportunity for—
Meaningful Work?, Philos. Technol. 33 (2020) 503–522. https://doi.org/10.1007/s13347-
019-00377-4. 

[266] S. Vallor, Moral Deskilling and Upskilling in a New Machine Age: Reflections on the 
Ambiguous Future of Character, Philos. Technol. 28 (2015) 107–124. 
https://doi.org/10.1007/s13347-014-0156-9. 

[267] M. Loi, Technological unemployment and human disenhancement, Ethics Inf Technol. 17 
(2015) 201–210. https://doi.org/10.1007/s10676-015-9375-8. 

[268] Eurofound, Game-changing technologies: Transforming production and employment in 
Europe, Publications Office of the European Union, Luxembourg, 2020. 

[269] V. De Stefano, “Negotiating the algorithm”: Automation, artificial intelligence and labour 
protection, International Labour Office, Geneva, 2018. 

 


