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Abstract—Deep Learning (DL) has certainly improved indus-
trial inspection while significant progress has been also achieved
in metrology with impressive results reached through their
combination. However, it is not easy to deploy metrology sensors
in a factory, as they are expensive, and require special acquisition
conditions. In this paper, we propose a methodology to replace
a high-end sensor with a low-cost one introducing a data-
driven Soft Sensor (SS) model. Concretely, a residual architecture
(R%esNet) is proposed for quality inspection, along with an error-
correction scheme to lessen noise impact. Our method is validated
in PCB manufacturing, through the identification of defects
related to glue dispensing before the attachment of silicon dies.
Finally, a detection system is developed to localize PCB regions
of interest, thus offering flexibility during data acquisition. Our
methodology is evaluated under operational conditions achieving
promising results, whereas PCB inspection takes a fraction of
the time needed by other methods.

Index Terms—Defect detection, PCB, ResNet, smart manufac-
turing

I. INTRODUCTION

NDUSTRY 4.0 aims to automate manufacturing processes

using smart technologies and has greatly benefited from
recent advancements in Deep Learning (DL). The success of
DL has been demonstrated by its numerous applications in a
variety of different industrial sectors ranging from telecommu-
nications [1] to electronics [2]. However, the large amounts of
accurately annotated data needed to train DL models neces-
sitate the deployment of multiple high-accuracy sensors for
industrial process monitoring. The use of high-end laboratory
sensors, which are accurate, stable, and robust, is not always a
feasible solution due to the high deployment and maintenance
cost they incur. Hence it is necessary to rely on less accurate,
yet low-cost sensors.

This paper is a direct extension of a previous work by
Dimitriou et al. [3], in which a Printed Circuit Board (PCB)
defect detection system is developed. Prior to the attachment of
integrated circuits, it is necessary to dispense conductive glue
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on the PCB’s substrate surface, during which defects related to
the dispensed glue volume may occur. Identification of such
defects is achieved through the use of a modular scanning
system and a 3D Convolutional Neural Network (3DCNN),
which regresses the volume of each glue deposit of a PCB.
Interestingly, glue volume is accurately estimated even after
die attachment when only part of the glue is visible and partial
information about its shape is available.

Despite the promising results obtained, this method relies
on the use of a laser profilometer which is expensive, slow,
needs to be calibrated, and requires controlled illumination
conditions during measurements. These limitations are the
main motivation for our work, where we propose to replace
the laser profilometer with a single RGB camera and a deep
learning architecture that provides laboratory level accuracy
in the shop floor (in situ). The replacement of a profilometer
with an industrial camera has numerous advantages, as it
significantly reduces the cost of automated inspection, making
it a suitable choice for in-situ deployment, whereas both data
acquisition and processing are faster, thus notably reducing
inspection time. To automate the inspection process using a
low-cost sensor, ground truth is acquired in the laboratory
by analytically calculating the volume of each sample from
its corresponding 3D point cloud representation and is sub-
sequently used to train a deep network that estimates glue
volume from 2D image data. Additionally, we develop a
segmentation and detection system that localizes glue regions
within the image irrespective of the PCB’s orientation. Finally,
we propose a method to deal with label noise, inherently
existent due to the finite resolution of the 3D scans, using
only a few reliable measurements. The main novelties of our
work are summarized below:

e« We propose a new methodology to replace expensive
sensors with in situ ones

« We provide increased flexibility during data acquisition,
as accurate part placement is not necessary

o We extrapolate a 3D variable (volume) from 2D data
(RGB image)

o A modified Residual Network for Regression (R?esNet)
is introduced, and the impact of different choices of depth
is examined

e We demonstrate the potential of this approach in a
semiconductor manufacturing use case

o A new benchmark dataset is generated.

The remainder of this paper is organized as follows. Section
II reviews the related work in soft sensors and metrology meth-
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ods for defect detection for industrial applications. Section
IIT outlines the examined defect detection use case as well
as the proposed methodology. A detailed description of the
available data is given and the various deep architectures used
are introduced. In section IV, our methodology is evaluated
and the experimental results are presented. Finally, Section V
concludes this paper.

II. RELATED WORK

In this section, we give an overview of the most recent work
related to our method. Since we develop a Soft Sensor (SS)
model to indirectly estimate glue volume from RGB image
data and use the estimated value to identify defects, we further
elaborate on the recent advancements in the fields of defect
detection via deep learning, soft sensor models and Al.

A. Defect Detection via DL

The successful application of DL in the industry can be
partially attributed to the introduction of several deep convo-
lutional architectures that have revolutionized image classifi-
cation and have since been used as backbone networks for
various tasks. In [4], the authors introduce VGG, a deep con-
volutional architecture that makes use of multiple layers while
keeping a small, fixed, 3 x 3 size for the convolutional kernels,
which has since become a standard process. Proposing the use
of residual connections, the authors in [5] develop ResNet,
achieving state-of-the-art results in multiple image classifica-
tion datasets. Extending this idea, DenseNet is proposed in [6],
by concatenating the feature maps of each layer with the input
of every subsequent layer, thus facilitating the gradient flow
to the initial layers during backpropagation. To address the
increasing demand for mobile and real-time embedded vision
applications, the authors in [7] and [8] propose MobileNet,
which is based on depthwise separable convolutions to lower
the computational cost both during training and inference
without significantly affecting performance.

In recent years, DL approaches have been successfully
adopted for various industrial applications, mainly focusing
on optimizing the production process through the identification
of defective parts. In [3], upon which our work is based, the
authors consider a PCB defect detection use case and develop
a 3DCNN regression architecture called RNet to estimate the
volume of a conductive glue deposit before die attachment. In
[9], a data-driven fault diagnosis system is developed using
a 2DCNN in combination with a parameter-free conversion
method to transform 1D signals into 2D images, and its
effectiveness is demonstrated on three distinct fault diagnosis
use cases. Moreover, in [10] a deep convolutional transfer
learning network is developed to address the discrepancy
between source and target domain during training and test-
ing and is evaluated on three motor bearing fault diagnosis
datasets. The authors in [11] propose the use of a Fault
Diagnosis Classification Convolutional Neural Network (FDC-
CNN), which enables the association of the output of the
first convolutional layer with the structural meaning of the
raw data, making it possible to extract information regarding
the cause of defects, and test their method on a chemical

vapor dataset. To cope with noisy data, a wavelet-inspired
soft thresholding approach is adopted in [12] in which the
optimal threshold values are learned, and it is applied for the
identification of bearing and gear faults in rotating machines.
A joint detection and classification scheme is proposed in
[13] for steel plate defect inspection through the fusion of
multilevel features. Another defect detection application in the
hard metal industry is developed in [14], where data gathered
from multiple sensors are used for quality assessment. In [15]
the authors develop another feature fusion method exploiting
Sparse Auto Encoders (SAE) whereas in [16], the use of a
segmentation-based deep architecture that can generalize based
on only few training samples is suggested to identify surface
crack defects. Finally both [17] and [18] take advantage of
deep learning models to identify welding defects.

B. Soft sensors & Al

Another line of DL applications in the industry, involves
the development of Soft Sensors (SS) for the indirect mon-
itoring of hidden variables during production. A data driven
approach to estimate hazardous gas concentrations using Prin-
cipal Component Analysis (PCA) to decorrelate the input
signals along with a Deep Belief Network (DBN) is proposed
in [19]. Furthermore, a soft sensor application is developed
in [20], where Support Vector Machines (SVM) and other
predictive models are used to regress key variables in a
refinery isomerization process. In a related application [21],
a stacked auto encoder soft sensing model is introduced,
where a product concentration prediction use case on an
industrial debutanizer column process is examined. In [22],
a nonlinear finite impulse response model is used to estimate
the deflection of a polymeric mechanical actuator, whereas
in [23] a semi-supervised approach is introduced to exploit
unlabeled data. Another semi-supervised method is suggested
in [24] to estimate the COs concentration in an ammonia
synthesis process. A spatiotemporal attention-based long short-
term memory network is proposed in [26] and is evaluated on
an industrial hydrocracking process use case.

III. PROPOSED METHODOLOGY

In this section the proposed methodology is outlined. First,
an overview of our method is given and the studied use case
is described in detail. Next, the in situ sensing module under
consideration is introduced along with the high-end sensor
that is replaced. Finally, our R2esNet architecture and the
segmentation model for glue detection are described.

A. Overview

In order to transfer the accuracy and robustness of a
laboratory sensor in the shop floor we adopt the following
approach: For each data sample, we obtain two distinct rep-
resentations ' and z°, corresponding to the measurements
acquired using a high-end laboratory sensor and a low-cost
in situ one respectively. Subsequently, measurements x' are
used to create annotated samples by analytically estimating
the quality variable under consideration through y = f(z!),
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where f(-) is considered to be known. Exploiting the existing
correspondence between the samples we create a dataset
{(z3, yl)}f\il which is then used to train a deep network
h(z*, ) such that:

h(z*, %) ~ f(') (1)

where 0* are the optimal network parameters estimated by
minimizing the empirical cost as shown in (2)

0" = in " L(h(z, ), y; 2
arggmlnz (h(z$, 0), y;) )

and L(h(zf, 0), y;) is any valid cost function. A schematic
overview of this approach is given in Fig. 1. The deep network
predicts the value h (2°,6) = ¢, and its parameters are tuned
to minimize the prediction error e = y — .

In Situ
Sensor

Y Estimated
Key Variable

Data
Sample

Lab
Sensor

Fig. 1: Schematic overview of the proposed methodology.
During training a high-end sensor is used to extract ground
truth measurements. Subsequently the low cost sensor along
with the trained model are deployed in the shop floor.

B. Studied use case

The growing wave of small electronics products such as
wearables and IoT devices has led to increased demand for
small-scale printed circuit boards. A critical stage in the
microelectronics manufacturing industry is the dispensing of
conductive glue on an LCP substrate surface placed by a
glue dispensing machine before the attachment of Integrated
Circuits (ICs).

The volume of the dispensed glue deposit is a crucial
variable that needs to be monitored during production as it
directly affects the quality of the produced circuit. Specifically,
excessive glue may lead to internal short circuits, whereas
insufficient glue leads to weak die bonding. The current
practice for the detection of such faulty conditions is the
manual inspection of the PCB, which is both a time-consuming
and highly inaccurate process.

The development of a soft sensor model for the monitoring
of the dispensed glue volume and the inspection of a part
benefits production and is considered crucial towards the
automation of quality control. The use of a laboratory sensor
such as a laser profilometer [3], even though produces highly
accurate and reliable measurements, is expensive and may
slow down production. Our proposed methodology aims to
transfer the accuracy of a high-end sensor on the shop floor
while simultaneously offering increased flexibility during the
acquisition of measurements and highly reducing inspection
time and cost. An example of a PCB consisting of 18 identical
circuit modules is shown in Fig. 2. Each module contains sev-
eral glue deposits whose volume needs to be monitored during
inspection. There are five different types of glue containers as
can be seen in Fig. 3, which we label A, B, C, D and E.

Fig. 2: Example of printed circuit board used for the develop-
ment of the proposed system. Each PCB consists of two rows
and contains 18 circuit modules in total.

(b)

Fig. 3: Examples of three circuit modules, each corresponding
to a different state. The glue dispensed on circuit (a) is
insufficient, on circuit (b) normal whereas on circuit (c¢) it
is excessive.

C. Sensing module

For PCB inspection, the sensing modules under considera-
tion include a modular laser scanning system (high-end sensor)
and an industrial RGB camera (low-end sensor). The high-end
setting comprises an Optimet Conopoint-10 sensor, a Newport
XPS-RL2 motion controller, two linear stages, and the support
breadboards. The same zig-zag scanning strategy as in [3] has
been employed to reduce inspection time. Each glue deposit is
scanned twice, once with a resolution of 50 um and once with
20 pm. Indicative point cloud representations of the acquired
scans can be seen in Fig. 4, from where it is evident that the 3D
geometric structure of the glues is successfully captured. The
low-cost setup consists of a Baumer VCXG-201C.R industrial
camera and a Fujinon machine vision CF25ZA-1S lens. The
lens’ focal length is 25 mm and thus, when placed in the right
height, the PCB captures a large part of the image compared
to the background, thus fully exploiting the setup’s potential.
All inference computations are performed using a Jetson AGX
Xavier, and thus the whole system can easily be deployed in
the shop floor following the edge computing paradigm. The
proposed setup is shown in Fig. 5.

D. Generating a Dataset

Obtaining an annotated dataset requires expert knowledge
and is usually a challenging and time-consuming process,
especially in industrial applications where the sample parts,
particularly defective ones, are scarce. Automating the anno-
tation process is highly beneficial as it largely reduces the
time and workload needed. To address this common issue, we
propose two different glue volume estimation processes, one
using the 50 ym to automatically generate a noisy dataset for
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(a) Type A (b) Type B

(c) Type C

(d) Type D (e) Type E

Fig. 4: 3D scans of glue types A,B,C,D, and E taken with a resolution of 20 um.

Fig. 5: Proposed setup consisting of a Jetson AGX Xavier and
a machine vision camera.

training, and another using the 20 ym to manually generate
a reliable and accurate set of measurements for validation
purposes.

In both cases, for each regional scan RANSAC [25] is
applied to estimate the substrate LCP surface plane. Subse-
quently, for the low resolution scans the points belonging to
the glue deposits are identified as the outliers of the plane’s
model, whereas for the high resolution scans they are manually
cropped. Each 3D point of the glue point cloud is then
projected onto the estimated substrate plane to form a closed
surface. Following this process, the resulting 3D representation
is 2! = GUS, where G = {g;}, is the glue cloud and
S = {g/}M, the corresponding projected substrate surface
cloud. Glue volume is approximated using the formula:

M
V() = llgi — gilly Asi (3)
=1

where As; is the rectangular surface area element and ||-||2 the
standard Euclidean 2-norm of a vector. As; depends on the
resolution r of the point cloud through the relation As; = 2.
Equation (3) is geometrically interpreted in Fig. 6. Essentially,

the above formula is a discrete approximation of its continuous

counterpart
V=// g(z,y) dx dy 4)
D

where D is the domain of integration, and g(z,y) the height
of the glue deposit at any point. The coordinate system chosen
is such that the substrate surface plane corresponds to z = 0.

Due to the existence of sensor noise during scanning, the
imperfect plane fitting and glue-substrate segmentation of the
point cloud, and the discretization error introduced in (3), the
estimated glue volume is unavoidably corrupted by noise. Let
v; be the true volume value for sample ¢. By construction,
we obtain a set of measurements {y¢}Y ,, estimated from
the 20 ym resolution point clouds and a corresponding set

Av; = As; |lgi — gill,

/p. A

Fig. 6: Illustration of the analytical volume estimation process.
Every point g; € G is projected onto the substrate plane p,
and the elementary volume Awv; is calculated. The sum of all
Awv; approximates the total glue volume.

{ys I, estimated from the 50 um glue clouds. Both sets of
measurements are corrupted by noise such that:

yd = v +nd 5)
y; = v +n (6)

where nf ~ WN(us, 0°) and n¢ ~ WN(ud, o¢) are
modeled as white noise random processes, where it is assumed
that 0¢ < o° and that u¢ ~ 0. After acquiring the PCB
images, all glue regions are manually cropped thus obtaining
representations 7, which are used to form a noisy training set
Drvain = {(2, yf)}fil and a testing set Dresy = { (5, yld)}j\il
using the more reliable, dense resolution measurements for
evaluation purposes.

E. Deep architectures

The developed system consists of a two step process.
First, the acquired image is fed into an instance segmentation
network that predicts the pixel coordinates of each glue deposit
and classifies its type. Subsequently, each detected glue deposit
is fed into a regression network that estimates its volume.

Segmentation & Detection: During the last few years,
computer vision has immensely advanced, especially regarding
object detection and instance segmentation tasks. Extensive
research in the field has led to the development of two-stage
detection methods, like the seminal Faster-RCNN [27] method
that is capable of fast and accurate object detection through
the utilization of a Region Proposal Network (RPN). A variant
of Faster R-CNN, called Mask R-CNN, is introduced in [28]
to perform semantic segmentation on the detected objects.

Since it is necessary to identify all glue deposits within
an image, we use Mask R-CNN to first segment the PCB
into its constituent modules and Faster R-CNN to detect and
classify the glue deposits within each module. For each PCB,
the coordinates of its modules are manually annotated. Five
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of the PCBs are kept for training and one for testing. Due
to the small-scale dataset available, we perform heavy data
augmentation by applying random rotations, crops, random
scaling, and random horizontal and vertical flips during train-
ing. Besides increasing the size of the dataset, augmentation
also contributes to the development of the desired invariances.
Subsequently, for every detected module, we fit the minimum
area rectangle to its binary mask and warp the image using
the rectangle’s four corners. The glue detection Faster R-
CNN is trained to localize all glue deposits within a module
and classify their type. To this end, the pixel coordinates of
all glue deposits are manually annotated to create a dataset.
The same kind of augmentation is used as before to develop
translational, rotational and scaling invariance. Both networks
use a ResNet50 backbone and are pretrained on the ImageNet
dataset [29]. Finally, by performing another affine coordinate
transform using the detected bounding boxes, the glue deposit
images are isolated. A schematic representation of the instance
segmentation system is shown in Fig. 7.

Glue Detection System

Mask
R-CNN

Affine
Coordinate)
Transform

Segmented
image

Raw PCB image

Affine
<«—— [Coordinate
Transform

—

Faster oty o
<—— | RCNN | <—— E5%y

Isolated module

Isolated g\ae

image De(ec‘edlue

deposits

Fig. 7: Schematic representation of the proposed segmentation
and detection system. The raw PCB image is fed into the
segmentation network, and subsequently the extracted modules
are fed into the detection network which regresses a bounding
box for each glue deposit.

Volume Regression: To automate the glue volume es-
timation process, we develop RZesNet, a deep regression
network based on the well-known Residual Network (ResNet)
architecture [5]. Residual networks exploit the use of shortcut
connections between intermediate layers, and by doing so
can define very deep architectures that avoid overfitting and
increase the convergence rate during training. As the authors
advocate, it is easier to learn residual rather than direct
mappings. The final layers of the network consist of a global
average pooling layer, along with a 1000-way fully connected
layer with softmax for classification.

To perform regression, we modify the existing ResNet
architecture by replacing the last classification layer with
a single-output fully-connected layer and omit the use of
the softmax activation function. We experiment with three
choices of depth by stacking 4, 8, and 16 residual blocks,
which correspond to 10, 18, and 34 layers respectively. Each
network is trained for 90 epochs using Adam with an initial
learning rate of 10, which is divided by 10 every 30 epochs.
Weights are initialized as in [30] and trained from scratch.

All training samples are normalized by subtracting the per-
channel mean and dividing by the standard deviation over the
whole dataset, whereas the labels are scaled to the interval 0-1.
Data augmentation is applied in the form of random rotations,
translations, horizontal and vertical flips, as well as brightness,
contrast, saturation, and hue jitter. Moreover, due to the small
dataset available, we use a mini-batch size of one and therefore
replace all batch normalization layers with layer normalization.
The cost function used is the typical for regression MSE loss.
The schematic overview of the proposed architecture is shown
in Fig. 10.

Compared to other deep architectures, RZesNet achieves
faster inference due to its reduced size, while the use of
residual connections lowers the risk of overfitting. As in
most industrial applications, annotated data is scarce, and
computational resources are limited, we conclude that R2esNet
is well suited for edge deployment In general, the few hun-
dred samples available would be inadequate to train a deep
network and would likely result to the model overfitting the
training data. However, due to the controlled image acquisition
environment and the relatively small variability of the glue
samples, even a small dataset is enough to successfully capture
the problem’s statistics.

Volume Measurements Volume Difference

—— 20 um Measurements —— Difference

—— 50 um Measurements
1.0

0.8
0.6

0.4

|
WMWW o) 4
0 50 100 Sal’l],i]opIe 200 250 300 0 50 100 SarITS]Dple 200 250 300
(a) (b)

Fig. 8: Plot of y; and y{ on the left figure, and their difference
yi — y; on the right for type A glues. For better illustration
purposes measurements y; are sorted in ascending order.

Error Correction: As has been described in Subsection
III-D, the available measurements for training are corrupted
by white noise, and thus it is necessary to employ some
regularization strategy to cope with this issue and develop ro-
bustness for the trained model. The two sets of measurements
for type A glues are illustrated in Fig. 8. It is made evident
that besides the random fluctuations present in the sparse
resolution measurements, there also exists a deterministic bias
directly correlated with the amount of the dispensed glue. The
existence of this bias is attributed to the overestimation of the
substrate plane’s height, as well as the inability of RANSAC
to correctly classify the points near the boundaries of the glue.
Inspired by this observation, we hypothesize that the existent
error is related to several other characteristics, such as glue
shape, and can thus be partially predicted from the 2D input
images. Formally, we assume that there exists a deterministic
error term e; such that:

yi =i+ 4 nj ™)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T11.2022.3182343

In order to refine the network’s predictions, we employ a
parallel “error-correction” network that functions as a regular-
izer and whose aim is to regress the deterministic error from
the input image x;. The structure of the proposed model is
illustrated in Fig. 9.

Volume y
Predicti PO
Data fedicton Y — € Refined
Sample prediction
Error
Correction

Fig. 9: Schematic representation of the proposed noise com-
pensation methodology.

To minimize the computational load added through the
error-correction network, we choose to employ a RZesNet
architecture of depth 10 in every case. A small number of
reliable dense resolution measurements acquired from the
20 pm scans is used for training, during which the parameters
of the volume prediction network remain frozen. The same
optimization and augmentation strategy is used as before. The
small number of available training samples further justifies the
choice of a shallower architecture.

Algorithm 1 Printed Circuit Board Inspection

Input: Raw RGB image x € R3*H*W

Output: Estimated glue volumes V = {v;;}
K : Number of Modules
M : Number of glue deposits per module
1: PCB Segmentation (m;)X > m;: Circuit module ¢
2: fori=1:K do
31 Glue Localization (gq;)}%,
4 for j=1:M do
5 Volume Estimation v;; = R%esNet(g;;)
end for
end for

K,M
i=1,j=1

> gi; Glue deposit j

IV. EXPERIMENTAL EVALUATION

In this section, our proposed methodology is evaluated.
First, our instance segmentation system is visually evaluated,
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Fig. 10: Schematic overview of the proposed RZesNetl0
architecture. The model consists of four residual blocks, an
output and an input block. Each block sequentially performs
convolution, layer normalization, rectification, convolution and
layer normalization.
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and its robustness to translations and rotations of the input
image is demonstrated. Subsequently, we evaluate the devel-
oped regression model R%esNet. The three different choices
of depth are compared through the use of 10-fold cross-
validation, whereas testing set predictions are shown. Finally,
inspection times for the six defective and non-defective parts
are calculated and presented.

A. Module segmentation and glue detection

To evaluate the robustness of our segmentation model,
we artificially apply random rotations and translations to the
acquired input images to simulate the effect of part mis-
placement. As can be seen in Fig. 11, the developed system
successfully segments the PCB into its modules in all three
cases. Even in the more challenging cases, where the image
is either rotated or translated, all modules are detected despite
the partial occlusion near the boundaries of the PCB, which
indicates that the system has learned to generalize. Qualitative
results of our glue detection system are shown in Fig. 12.
Notice that despite the large difference in both illumination
and the amount of the dispensed glue deposits, all regions are
accurately localized and their type is correctly predicted.

Fig. 11: Testing PCB segmentation results. In the first row
the original image is segmented, in the second the image
is translated before segmentation whereas in the third it is
rotated.

B. Glue volume estimation

The available data for the development of the proposed
system consists of 6 PCBs, each containing 18 circuit modules
as shown in Fig. 2. There are 5 different types of glue
containers annotated A, B, C, D and E, each corresponding to
a different shape and amount of glue that needs to be placed
on the LCP substrate surface as is illustrated in Fig 3. Within
each circuit module, there are four placeholders for each glue
type thus resulting in a total number of 20 placeholders per
module. On the top row of one of the PCBs dies have been
attached, and hence the total number of available samples per
glue type is 5 x 4 x 18 + 4 x 9 = 396.

To obtain reliable testing results we adopt the following
strategy to split the dataset into training, validation, and testing
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(b)

Fig. 12: Examples of the detected glue regions within two
PCB circuit modules.

sets: We keep the glues located in the third row of every mod-
ule for testing, whereas the remaining samples are randomly
divided into training and validation samples. This results in a
75%-25% training\validation-testing split, in which the testing
set contains glues from all PCBs, and whose volume varies
from very little to excessive, that way successfully capturing
the whole dataset’s statistics. For the same reasons, we use
the ground truth volumes estimated using the 20 ym resolution
scans from the first row of each PCB to obtain a clean dataset,
which is used to train the error-correction network. That way,
the number of the resulting reliable training samples is 99.
The average validation error over all 10 folds is shown in Fig.
13. We observe that the deepest model trained consisting of 34
layers performs the worst, whereas R%esNet10 and R2esNet18
perform comparably with R2esNet10 converging faster in most
cases.

In order to quantitatively evaluate and compare the devel-
oped models we use the Normalized Root Mean Square Error
(NRMSE) metric as shown in (8).

S @i — y)?
it (yd)?

To evaluate the effectiveness of R%2esNet compared to other
popular backbone architectures we perform the same experi-
ments using VGG, DenseNet and MobileNetV2. For training,
all hyperparameters are kept the same as in R%esNet, whereas
batch normalization layers are replaced with layer normaliza-
tion. As in R2esNet, we decrease the number of layers used by
stacking 8 densely connected blocks for DenseNet, which re-
sults to a 20-layer network. Due to its efficient and lightweight
implementation MobileNetV2 is kept intact, whereas a VGG
network consisting of 11 layers is used. The average validation
NRMSE and testing NRMSE are reported in Tables I and
IT respectively. Contrary to the usual case, where deeper
architectures yield improved results, we observe the opposite,
even though Residual Networks are known to tackle the
degradation problem associated with increased depth. During
cross-validation, in most cases RZesNet10 produces the best
results, whereas R2esNet34 performs worse by a significant
margin. In the testing set, irrespective of the choice of depth,

NRMSE =100 x ®)

all networks perform approximately the same, whereas we
observe a significant improvement when using a parallel error-
correction network. Compared to other backbone architectures,
R2esNet performs better by a small margin in most cases,
whereas the classical convolutional VGG network performs
significantly worse.

TABLE I: Average Validation NRMSE x 100 %, 50 um.

[ Twpe | A [ B [ € [ D [ E |
RZesNetl0 | 19.16 | 34.85 | 26.27 | 56.69 | 29.0
RZesNetl8 | 19.57 | 36.97 | 30.04 | 51.72 | 27.98
R7esNe34 | 30.07 | 51.95 | 44.75 | 43.15 | 5251
DenseNet | 18.98 | 42.75 | 34.11 | 52.38 | 28.26

MobileNetV2 | 20.19 | 44.93 | 31.29 | 55.26 | 33.54
VGG 4831 | 59.92 | 50.44 | 6592 | 45.87

TABLE II: Testing NRMSE x 100 % 20 pum.

[ Tpe | A | B [ € [ D [ E |
RZesNet10 35.71 48.16 47.64 43.11 29.31
ec-RZesNetl0 | 18.53 30.69 28.05 | 28.13 | 26.35
RZesNet18 34.60 47.74 48.04 43.13 26.20
ec-RZesNetl8 | 14.51 33.46 27.13 30.16 26.47
RZesNet34 37.02 46.48 50.81 46.81 25.11
ec-R%esNet34 | 19.94 | 28.39 | 29.45 30.86 | 22.62
DenseNet 35.61 52.77 38.79 58.89 46.57
ec-DenseNet 15.72 41.74 25.32 45.04 32.47
MobileNetV2 36.68 51.76 38.11 57.30 41.27
ec-MobileNet 17.78 39.03 27.02 43.01 32.88
VGG 39.37 36.62 46.64 40.83 39.55
ec-VGG 24.84 32.63 35.00 31.83 33.33

Inspection times for all 6 PCBs are shown in Table III.
We observe that for the most shallow models R%esNet10 and
ec-R2esNet10 it takes less than a minute for the inspection
of a part, which is a drastic reduction compared to the 20-
30 minutes needed in [3] only for the scanning module to
operate as shown in Table IV. It is also noted that we have
not optimized our implementation for the jetson so there is
further room for improvement in terms of execution time

TABLE III: Part inspection times in seconds.

\ [PCB1 | PCB2 | PCB3 | PCB4 | PCB5 | PCB6 |

RZesNet10 45.04 | 44.38 | 44.45 | 44.51 | 44.48 | 44.68
ec-RZesNet10 55.60 55.40 55.58 55.41 55.24 55.32
RZesNet18 55.57 54.17 54.21 55.22 54.23 54.39
ec-RZesNet18 64.03 63.58 63.75 63.64 63.73 63.60
RZesNet34 75.41 72.96 72.26 71.46 71.93 72.28
ec-RZesNet34 80.63 81.28 80.81 80.82 81.07 81.09
DenseNet 51.75 51.94 51.44 51.47 50.90 50.77
ec-DenseNet 61.21 60.28 60.35 60.07 59.36 59.16
MobileNetV2 63.63 63.49 63.30 63.38 63.28 63.08
ec-MobileNetV2 | 90.23 89.33 88.53 88.20 88.26 88.09
VGG 110.54 | 110.26 11.60 111.98 | 111.61 | 111.83
ec-VGG 188.44 | 190.70 | 188.29 | 190.51 | 190.85 | 190.37

Testing set predictions for all the developed models are
shown in Fig. 14. We observe that the predictions follow
the increasing ground truth trend and thus offer insight into
the amount of the dispensed glue. Without error correction to
regularize the outputs, the predicted volume is usually underes-
timated, which is attributable to the bias existent in the training
samples. On the other hand, after regularization, predictions
accurately follow the mean. Furthermore, we notice that the
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Fig. 13: Average cross-validation loss of the three trained models for all glue types.
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Fig. 14: Testing set predictions for the trained models. On the top row predictions without the use of error-correction are
shown, whereas on the bottom the predictions are regularized.

TABLE IV: Scanning and inspection time comparison between

(3] and hod The effectiveness of our system is demonstrated by the
and our method.

various experiments performed. Despite the challenging na-

[ Model [ Scanning time | Inference time | Total time | ture of the problem addressed, we obtain satisfactory results.
RNet, 20pm 2620 470 3090 Specifically, predictions are accurate enough to facilitate the
RNet, 50pm 1181 470 1651 quality inspection process and hence reduce inspection time,
ec-RZesNet10 ~ 0.17 55.42 55.59 hich i ial f ds th P f th
coR%esNetls ~017 6372 63.89 which 1s a crucial factor towards the optimization of the pro-
o RZesNe3d ~017 80,94 ’111 duction process. Another interesting finding is the performance
ec-DenseNet ~0.17 60.07 60.24 degradation observed for deeper architectures, even though
ec-Mobilenet ~0.17 88.77 88.94 residual networks are specifically build to address this issue.

ec-VGG ~ 0.17 189.86 190.03 P
To further benchmark and evaluate the limitations of the

proposed methodology, a potential extension is its deployment

performance of the models is directly related to the variance
of label noise. Specifically, the MSE is lowest for types A and
E, which are the least affected by noise, whereas it is maximal
for types B and D.

V. CONCLUSION

In this article we propose a methodology to replace ex-
pensive laboratory sensors with in situ ones, and demonstrate
its potential by applying it for the development of a PCB
inspection system that only relies on the use of an industrial
camera and a Jetson unit. The developed system makes use of
our R2esNet architecture to perform glue volume regression
along with an error-correction network to cope with label
noise. Moreover, a segmentation and detection system that
significantly simplifies the data acquisition process is devel-
oped. An important contribution of this work is the ability of
R2esNet to regress a 3D geometric quantity from 2D data.

in other industrial use cases, where we can explore how
well it can generalize in terms of domain adaptation and
inferring values outside the nominal ones used during training.
Another interesting extension that can further improve the
inspection process is the deployment of the proposed system
on Augmented Reality (AR) gear.
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