
1

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No. 958264

D2.5

The OPTIMAI architecture specifications

– 2nd version

30 June 2022
The material presented and views expressed here are the responsibility of the author(s) only.

The EU Commission takes no responsibility for any use made of the information set out.

2

DOCUMENT SUMMARY INFORMATION

Grant Agreement

No
958264 Acronym OPTIMAI

Full Title Optimizing Manufacturing Processes through Artificial Intelligence and

Virtualization

Start Date 01/01/2021 Duration 36 months

Deliverable D2.5: The OPTIMAI architecture specifications – 2nd version

Work Package WP2 – User requirements, Technical Specifications and Use case

analysis

Nature Report Dissemination Level Public

Lead Beneficiary FORTH

Authors Konstantinos C. Apostolakis (FORTH)

George Margetis (FORTH)

Co-authors Stefania Stamou (FORTH)

Nikolaos Dimitriou (CERTH)

Christina Tsita (CERTH)

Walter Domenico Vergara (ENG)

Manfredi Giuseppe Pistone (ENG)

George Bogdos (FINT)

George Alexiou (FINT)

Andreas Böttinger (EVT)

Ali Sadr (EVT)

Elpiniki Papageorgiou (UTH)

Theodosis Theodosiou (UTH)

Andrea Gomez (UNIMET)

Clara Valero (UPV)

Antonio Zanesco (YBQ)

Greg Tinker (MTCL)

Fernando Ubis (VIS)

Agata Gurzawska (TRI)

Reviewers Walter Domenico Vergara (ENG)

Manfredi Giuseppe Pistone (ENG)

Elisa Rossi (ENG)

Sabrina Verardi (ENG)

DISCLAIMER

The OPTIMAI Project receives funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No. 958264. The sole responsibility for the
content of this document lies with the authors. It does not necessarily reflect the opinion of
the European Union. The European Commission is not responsible for any use that may be
made of the information contained herein.

3

DOCUMENT HISTORY

Version Date Changes Contributor(s)

V0.1 05/05/2022 Initial deliverable structure
Konstantinos C.

Apostolakis (FORTH)

V0.2 13/05/2022

Refinements to Sections 1, 3,

Updates to the Executive

Summary and Functional

descriptions of intact

components in Section 4

Konstantinos C. Aposto-

lakis (FORTH)

George Margetis (FORTH)

Stefania Stamou (FORTH)

V0.3 18/05/2022 Inputs integration by YBQ Antonio Zanesco (YBQ)

V0.4 20/05/2022
Inputs integration by ENG,

UTH

Walter Domenico

Vergara (ENG)

Manfredi Giuseppe

Pistone (ENG)

Elpiniki Papageorgiou

(UTH)

Theodosis Theodosiou

(UTH)

V0.5 23/05/2022 Inputs integration by EVT
Andreas Böttinger (EVT)

Ali Sadr (EVT)

V0.6 30/05/2022
Inputs integration by CERTH,

UNIMET

Nikolaos Dimitriou

(CERTH)

Christina Tsita (CERTH)

Andrea Gomez (UNIMET)

V0.7 03/06/2022

Refinements to Information

and Deployment Views

(Sections 4 & 5)

Konstantinos C. Aposto-

lakis (FORTH)

George Margetis (FORTH)

Stefania Stamou (FORTH)

V0.8 06/06/2022 Inputs integration by FINT
George Bogdos (FINT)

George Alexiou (FINT)

V0.9 15/06/2022
Integration of inputs from

W23 architecture workshop

George Bogdos (FINT)

George Alexiou (FINT)

Clara Valero (UPV)

Greg Tinker (MTCL)

Fernando Ubis (VIS)

Agata Gurzawska (TRI)

V1.0 21/06/2022
Final version for internal

review

Konstantinos C. Aposto-

lakis (FORTH)

4

V1.1 27/06/2022 Internal review

Walter Domenico

Vergara (ENG)

Manfredi Giuseppe

Pistone (ENG)

Elisa Rossi (ENG)

Sabrina Verardi (ENG)

V1.2 28/06/2022

First revisions after internal

review & Final Version for

Quality & Security Review

Konstantinos C.

Apostolakis (FORTH)

5

PROJECT PARTNERS

Logo Partner Country Short

name

ETHNIKO KENTRO EREVNAS KAI

TECHNOLOGIKIS ANAPTYXIS
Greece CERTH

FINT FUTURE INTELLINGENCE LIMITED Cyprus FINT

IDRYMA TECHNOLOGIAS KAI EREVNAS Greece FORTH

 EVT EYE VISION TECHNOLOGY GMBH Germany EVT

VISUAL COMPONENTS OY Finland VIS

 YOUBIQUO SRL Italy YBQ

PANEPISTIMIO THESSALIAS Greece UTH

ENGINEERING – INGEGNERIA INFORMATICA

SPA
Italy ENG

UNIMETRIK SA Spain UNIMET

UNIVERSITAT POLITECNICA DE VALENCIA Spain UPV

 Carr Communications Limited Ireland CARR

UNIVERSIDAD AUTONOMA DE BARCELONA Spain UAB

TRILATERAL RESEARCH LIMITED Ireland TRI

KLEEMANN HELLAS –INDUSTRIAL

COMMERCIAL SOCIETE ANONYME FOR

MECHANICAL CONSTRUCTION SA

GREECE KLEE

TELEVES SA Spain TVES

MICROCHIP TECHNOLOGY CALDICOT

LIMITED

United

Kingdom
MTCL

6

LIST OF ABBREVIATIONS

Abbreviation Definition

AI Artificial Intelligence

AIPMC AI-based Production Monitoring Component

API Application Programming Interface

AR Augmented Reality

BaaS Blockchain-as-a-Service

BOM Bill of Materials

CAI Conversational Agent Interface

CEP Complex Event Processing

CPPS Cyber-Physical Production System

DIDA Digital Industry Data Analytics

DML Dedicated Manufacturing Line

DoA Description of Action

DSS Decision Support System

DT Digital Twin

EbD Ethics by Design

ERP Enterprise Resource Planning

ETFA
IEEE Annual Conference on Emerging Technologies and Factory

Automation

EVM Ethereum Virtual Machine

F4I FIWARE4Industry

FMS Flexible Manufacturing System

FPGA Field-Programmable Gate Array

GA Grant Agreement

GAN Generative Adversarial Network

GDTA Generic Digital Twin Architecture

GE Generic Enabler

HDFS Hadoop Distributed File System

HMI Human-Machine Interface

HITL Human-in-the-Loop

HUD Heads-Up Display

7

I4.0 Industry 4.0

IaaS Infrastructure-as-a-Service

ICT Information & Communication Technologies

IEC International Electrotechnical Commission

IFD Information Flow Diagram

IIRA Industrial Internet Reference Architecture

(I)IoT (Industrial) Internet of Things

IPFS InterPlanetary File System

ISO International Organization for Standardization

IVRA Industrial Value Chain Reference Architecture

LASFA LASIM Smart Factory

LASIM Laboratory for handling, assembly and pneumatics (Acronym in Slovene)

LCtD Legal Compliance through Design

LDS Loosely-Defined Standards

LIDAR Light Detection And Ranging

LSTM Long Short Term Memory

MAIAR optiMAI Augmented Reality

MES Manufacturing Execution Systems

MQTT Message Queuing Telemetry Transport

NGSI Next Generation Service Interfaces

OMIDES Operator-Machine Interaction & Decision Support

OPC UA OPC (Foundation) Unified Architecture

OT Operation Technologies

PaaS Platform-as-a-Service

PC Personal Computer

PCE Production Control Engineer

PoE Power over Ethernet

PLO Product Line Operator

QCS Quality Control Sensors

R&D Research & Development

RA Reference Architecture

RAMI Reference Architectural Model Industrie

8

RBAC Role-Based Access Control

REST REpresentational State Transfer

ROI Return on Investment

SaaS Software-as-a-Service

SC Smart Contract

SCADA Supervisory Control and Data Acquisition

SCI 4.0 Standardization Council Industrie 4.0

SITAM Stuttgart IT Architecture for Manufacturing

SOA Service-Oriented Architecture

SoftSensor Software Sensor

SoS System-of-Systems

SPA Single Page Application

SSO Single Sign-On

ToF Time of Flight

UML Unified Modelling Language

9

Executive Summary

This report corresponds to the culmination of the system specification and architecture design

activities undertaken over the first 18 months of the OPTIMAI project lifetime, and represents

the final description of the OPTIMAI smart manufacturing solution architecture. The document

thoroughly describes the updated version of the envisioned solutions’ ecosystem, based on the

elicited stakeholders’ requirements and use case scenario definitions that preceded it.

The revised (and final) version of the OPTIMAI architectural stack is a result of a second iteration

of the three-step architecture design methodology, which followed the original definition derived

from exercising the approach over months 1-12. In this follow-up procedure, technology

exploration has considered the current technological state regarding the development of key

components in the OPTIMAI architecture, which have been reported in project deliverables from

WP3 and WP6. A second top-down design approach was then carried out, so as to identify

placement of potential new components and subsystems while maintaining the original vertical

segmentation of the architecture, so as to align components to the specified needs and

requirements of the end-users. After conclusion of this process, a total of 38 functional blocks

were identified (including former, modified and new architectural blocks in relation to D2.4).

Each component was then elaborated by project partners responsible for their implementation

through a bottom-up functional specification, using a revised component refinement template.

This template enabled partners to specify functional, information and deployment

characteristics of their components, essentially providing a baseline for the re-specification of

the relevant views of the architecture (Functional, Information, Deployment). Affirmation of the

new architecture was carried out via two online workshops, where consensus was reached

among the Consortium members, and preparation of the present report was greenlit.

It is therefore accepted that, where specified, the outcomes described in this report supersede

the results of the initial architecture definition in D2.4, thus complementing the previous

exploratory and design activities (both top-down and bottom-up) with new gathered evidence

and elaborating on the various components with additional information collected in the form of

online workshops with participation of all OPTIMAI partners. We hence also proceed to re-align

the revised architecture to leading Industrie (I)4.0 reference frameworks (RAMI 4.0 and IIRA), so

as to substantiate OPTIMAI as an I4.0-compliant approach to zero-defect manufacturing.

10

Table of Contents

Executive Summary .. 9

Table of Contents ... 10

1 Introduction ... 15

1.1 Mapping of project outputs .. 18

1.2 Updates since the initial deliverable version ... 20

2 Reference Architecture models.. 21

2.1 Definitions and conventions used .. 21

2.2 Reference architectures for Industry 4.0 ... 21

2.3 OPTIMAI reference implementation model ... 21

3 Architecture refinement approach .. 22

3.1 Technology exploration ... 22

3.2 Top-down design ... 23

3.3 Bottom-up refinement .. 27

3.4 Ethical compliance – Compliance through Design .. 28

4 OPTIMAI Architecture - Functional view .. 29

4.1 OPTIMAI functional blocks .. 31

4.1.1 Quality Control Sensors Network .. 31

4.1.2 Edge Computing Modules .. 35

4.1.3 Middleware Subsystem .. 35

4.1.4 On-the-edge processing for acquisition and actuation (OPR4A) 37

4.1.5 Cloud Computing Modules Subsystem .. 39

4.1.6 Middleware Cloud Data Repository Subsystem ... 39

4.1.7 Blockchain Framework ... 40

4.1.8 OMIDES Back-End Subsystem ... 42

4.1.9 Intelligent Marketplace Back-End .. 44

4.1.10 AI Framework .. 45

4.1.11 Smart Quality Control... 46

4.1.12 DT Framework .. 47

4.1.13 End-users’ Applications .. 48

4.1.14 OMIDES Front-End application .. 48

11

4.1.15 OPTIMAI Augmented Reality solution ... 49

4.2 OPTIMAI alignment to standards-led reference architectures .. 50

4.2.1 Alignment to RAMI 4.0 .. 50

4.2.2 Alignment to IIRA .. 55

4.2.3 Key takeaways ... 58

5 OPTIMAI Architecture - Information view ... 59

5.1 Overview information flow ... 59

5.2 Use Case-specific information flow .. 62

5.2.1 Multi-sensory data acquisition .. 63

5.2.2 Time-critical configurations: bypassing the Middleware ... 64

5.2.3 Defect detection and production line monitoring ... 65

5.2.4 On-the-edge processing ... 67

5.2.5 Manual and automatic re-configuration .. 67

5.2.6 Software configuration transaction on the blockchain ... 70

5.2.7 Production line simulation ... 70

5.2.8 Intelligent Marketplace .. 71

6 OPTIMAI Architecture - Deployment view ... 73

7 Conclusions .. 76

References... 77

Appendix A – Component refinement template .. 79

12

LIST OF FIGURES

Figure 1: OPTIMAI overall functional architecture component diagram (retrieved from D2.4,

M12). .. 15

Figure 2: OPTIMAI architectural framework with information flows (retrieved from D2.4, M12).

.. 16

Figure 3: OPTIMAI topological definition (retrieved from D2.4, M12). ... 17

Figure 4: Architectural design approach within OPTIMAI (retrieved from D2.4, M12). 22

Figure 5: OPTIMAI Functional architecture view – component diagram. 30

Figure 6. OPTIMAI Agent component diagram... 33

Figure 7. SoftSensors component diagram. ... 34

Figure 8. EVT Industrial vision sensors with EyeVision Web Service component diagram........... 35

Figure 9. Middleware component diagram .. 37

Figure 10. OPTIMAI OPR4AA Platform component diagram... 38

Figure 11. OPTIMAI Blockchain Framework component diagram .. 41

Figure 12. OPTIMAI Decision support system and early notification component diagram 43

Figure 13. OPTIMAI Intelligent Marketplace component diagram ... 44

Figure 14. OPTIMAI AI Framework component diagram. .. 46

Figure 15. MAIAR Software component diagram. .. 50

Figure 16: OPTIMAI placement within the RAMI 4.0 cubic model. Adapted from the original

Graphic © Plattform Industrie 4.0 and ZVEI, retrieved from [4] (reproduced here from D2.4, M12).

.. 51

Figure 17: OPTIMAI Layer-and-Hierarchy mapping to RAMI 4.0. .. 52

Figure 18: mapping between the IIRA Functional Viewpoint and IT layers established in RAMI 4.0.

Source: [8] (retrieved from D2.4, M12). .. 56

Figure 19: Functional mapping of the OPTIMAI Architecture to IIRA based on the alignment to

RAMI 4.0... 56

Figure 20: OPTIMAI high-level Information Flow Diagram. ... 61

Figure 21: OPTIMAI multi-sensory data acquisition sequence diagram. 64

Figure 22: OPTIMAI time-critical configuration and bypassing the Middleware sequence diagram.

.. 65

Figure 23: Defect detection and production line monitoring sequence diagram. 66

Figure 24: On-the-edge processing sequence diagram. ... 67

Figure 25: Manual and automatic reconfiguration sequence diagram (using OMIDES Front-end).

.. 68

Figure 26: Manual and automatic reconfiguration sequence diagram (using MAIAR Software). 69

13

Figure 27: Software configuration transaction on the blockchain sequence diagram. 70

Figure 28: Production line simulation sequence diagram. ... 71

Figure 29: Intelligent marketplace sequence diagram .. 72

Figure 30: OPTIMAI Deployment diagram. ... 74

Figure 31: Topological view of OPTIMAI architecture through the smart factory framework

perspective. ... 75

Figure 32: Architecture refinement – Component template distributed to partners (Cover page).

.. 79

Figure 33: Architecture refinement – Component template distributed to partners (page 2). ... 79

Figure 34: Architecture refinement – Component template distributed to partners (page 3). ... 80

Figure 35: Architecture refinement – Component template distributed to partners (page 4). ... 80

Figure 36: Architecture refinement – Component template distributed to partners (page 5). ... 81

Figure 37: Architecture refinement – Component template distributed to partners (page 6). ... 81

Figure 38: Architecture refinement – Component template distributed to partners (page 7). ... 82

Figure 39: Architecture refinement – Component template distributed to partners (page 8). ... 82

Figure 40: Architecture refinement – Component template distributed to partners (page 9). ... 83

Figure 41: Architecture refinement – Component template distributed to partners (page 10). . 83

Figure 42: Architecture refinement – Component template distributed to partners (page 11). . 84

Figure 43: Architecture refinement – Component template distributed to partners (page 12). . 84

Figure 44: Architecture refinement – Component template distributed to partners (page 13). . 85

Figure 45: Architecture refinement – Component template distributed to partners (page 14). . 85

Figure 46: Architecture refinement – Component template distributed to partners (page 15). . 86

Figure 47: Architecture refinement – Component template distributed to partners (page 16). . 86

Figure 48: Architecture refinement – Component template distributed to partners (page 17). . 87

Figure 49: Architecture refinement – Component template distributed to partners (page 18). . 87

Figure 50: Architecture refinement – Component template distributed to partners (back cover).

.. 88

14

LIST OF TABLES

Table 1: Adherence to OPTIMAI’s GA Deliverable & Tasks Descriptions .. 18

Table 2: Deliverables surveyed as part of the second technology exploration architectural design

phase ... 23

Table 3: List of identified main and total functional blocks in the OPTIMAI top-down architectural

stack ... 24

Table 4: Mapping between IIRA Functional Domains and OPTIMAI functional components. 56

Table 5: Interface information elements description and conventions used. 62

15

1 Introduction

This deliverable culminates the OPTIMAI consortium’s overall efforts at defining a modular,

service-oriented architecture for the OPTIMAI proposed solutions. The document, which is an

updated version of D2.4 “The OPTIMAI Architecture specifications – 1st version”, aims to serve

as a reference guide for the consortium partners engaged in the technical implementation of

the project, and are responsible for the development of the components that will comprise the

final architecture to be deployed at the pilot sites. The components, information flows and

topological considerations described in this deliverable are the result of a combination of the

entirety of activities undertaken in the context of Task 2.3 “System specifications and

architecture”, both those that produced the contents reported in D2.4, as well as those

undertaken after, which in some cases shall supersede the reported outputs of the 1st version

architecture definition.

The first version of the OPTIMAI architecture described at M12 presented a comprehensive

overview of the technical specifications, along with a first version of the functional viewpoint of

the architecture aimed at representing the functional blocks comprising the architectural model.

The functional view specified is presented in Figure 1, below.

Figure 1: OPTIMAI overall functional architecture component diagram (retrieved from D2.4, M12).

16

The early specification of component responsibilities and roles was complemented by high-level

overview of the interconnections between the specified functional architecture components to

establish a base for the foreseen interdependencies of each functional block with other

components. This has been reflected in Figure 2.

Figure 2: OPTIMAI architectural framework with information flows (retrieved from D2.4, M12).

Finally, deployment of the system was addressed by means of the framework of the Industry 4.0

smart factory [22], albeit extended to include also edge computing technologies, as shown in

Figure 3.

The purpose of this deliverable is to further elaborate on the proposed framework, providing

updates to the roles and responsibilities of the identified architectural building blocks as well as

their interfaces and deployment characteristics. Essentially, this report describes the final

system architecture resulting from 18 months of project implementation and architecture

refinement activities. Therefore, through the contents of this deliverable, the integrated

framework architecture is updated and finalized, encapsulating knowledge obtained through

months 12-18 of the project and leading up to the concrete system description and elaboration

for the deployment of the system at the OPTIMAI pilot sites.

17

Figure 3: OPTIMAI topological definition (retrieved from D2.4, M12).

It is accepted that for the remainder of the project, the OPTIMAI architecture viewpoints as

defined in the present document take precedence over the definition of the same architectural

viewpoint as specified in D2.4.

The present document is structured as follows:

• Section 2 contains no updates since the D2.4 version.

• Section 3 presents an overview of the steps followed for the refinement of the

architecture functional components and their interdependencies, following the D2,4-

established architectural approach.

• Section 4 describes the functional viewpoint of the OPTIMAI architecture, presenting a

detailed description of the architectural components and subsystems, and offering

insight into the mappings drawn to the most prominent reference architecture models

and guiding principles.

• Section 5 presents the information viewpoint of the OPTIMAI architecture, elaborating on

the way information flows through the architectural components (presented at both a

high-level overview and further targeted at indicative scenarios described in the identified

OPTIMAI use cases).

• Section 6 presents the OPTIMAI solution’s deployment over physical and virtualised

resources, as well as the topological map based on the smart factory framework, which

it extends to accommodate the foreseen edge computing capabilities.

Finally, in Section 7, the key points of the document are summarized.

Quality Control Sensors Network

001 002 003 004 005 006 007 008

Physical
Resources

Edge

Industrial
Network

Cloud

Supervisory
control

Terminals

009

013

Middleware

Middleware
Cloud Data
Repository

Blockchain

Big data

Statistician

Coordinator

OMIDES
Back-End

Marketplace
Back-End

Digital
Twinning

Smart Quality
Control

027

OMIDES Front-End Marketplace
Customer Front-End

034

18

1.1 Mapping of project outputs

The purpose of this section is to map OPTIMAI Grant Agreement (GA) commitments, both within

the formal Deliverable and Task description, against the project’s respective outputs and work

performed. This mapping is presented in Table 1, below.

Table 1: Adherence to OPTIMAI’s GA Deliverable & Tasks Descriptions

OPTIMAI Task Respective Document

Chapters

Justification

T2.3: System specifications

and architecture

“In this scope, the definition of

specifications for the various

components of the system and

the whole system as an entity

will be attempted, so as to fulfil

the existing and future

demands of stakeholders”.

Section 4 - OPTIMAI

Architecture - Functional view

The detailed description of

the final functional blocks

and subsystems

underpinning the OPTIMAI

stakeholders’ requirements

are described in Section 4 of

this document.

T2.3: System specifications

and architecture

“Based on the analysis of user

needs and scenarios,

conducted in T2.1 and T2.4,

system specifications will be

defined according to existing

standards activities in order to

address interoperability and

security requirements for each

module”.

Section 2 - Reference

Architecture models

A comprehensive overview of

standards and industry-led

reference architectural

models is provided in Section

2, which is firmly elaborated

in D2.4 (Void in this report).

Section 4.2 - OPTIMAI

alignment to standards-led

reference architectures

Section 4.2 details the

mappings and parallels

drawn between the refined

OPTIMAI functional

architecture perspective and

two leading standardisation

initiatives referring to the

system as both an Industry

4.0 solution and an Industrial

Internet of Things

deployment.

T2.3: System specifications

and architecture

“In addition, this task will

analyse the requirements and

recommendations of the

Section 3.4 - Ethical

compliance – Compliance

through Design

Following the description of

the architecture definition

approach taken in the first

year of the project, this

Section presents key

19

OPTIMAI solution resulted from

WP9 regarding the ethics and

regulatory framework in order

to define an architecture that

reflects the concept of “security

and privacy by design””.

principles followed to adhere

to an Ethics by Design and

Legal Compliance through

Design approach (Void in this

report, no changes since

D2.4).

T2.3: System specifications

and architecture

“Effort will be put system

modularity so as to address

diversity in equipment and

resources, thus allowing for

future changes, updates and

upgrades.”

Section 6 - OPTIMAI

Architecture - Deployment

view

The final description of the

foreseen tangible

infrastructures necessary for

supporting deployment of

the system components in

service to the project use

cases is described in Section

6.

T2.3: System specifications

and architecture

“The design of every

architectural module will have

to take into account all

relevant and important

elements like system

requirements, risk factors,

software issues,

communication elements,

safety issues, hardware

requirements and specific

application requirements”.

Section 3 - Architecture

refinement approach

This Section covers the

approach followed for

defining the final version of

the architecture described in

this document.

Section 4 - OPTIMAI

Architecture - Functional view

This Section describes the

responsibilities, roles and

foreseen dependencies of

the OPTIMAI functional

blocks, driven by the elicited

functional and non-

functional requirements. The

perspective of standards’

bodies with respect to the

OPTIMAI use cases is also

taken into consideration.

Section 5 - OPTIMAI

Architecture - Information

view

This Section describes the

information flow within

OPTIMAI, with a specific aim

at demonstrating how

information flows through

the system for specific tasks

identified in the project use

cases.

20

Section 6 - OPTIMAI

Architecture - Deployment

view

This Section elaborates on

the topology for the smart

factory solution proposed,

with implications on

hardware and software

requirements, along with a

view on the necessary

applications’ end-user

terminals to target.

1.2 Updates since the initial deliverable version

It is accepted that, where specified, the outcomes described in this report supersede the results

of the initial architecture definition (D2.4). Hence, the following Sections complement the

previous exploratory and design activities (both bottom-up and top-down) with newly gathered

evidences, elaborating on the various components with updated information collected in the

form of online workshops (with participation of all OPTIMAI partners) and following careful

examination of project deliverables. For this reason, to avoid repetition, whenever information

remains constant across the two deliverables (D2.4 and D2.5), it is accepted that the content in

D2.4 hold true. In these cases, the corresponding Sections in this document will be marked as

‘Void’. Whenever information from D2.4 is updated, but specific paragraphs from that report: (i)

hold true; and (ii) are necessary to provide context for the updated information, those

paragraphs will be included in the following manner:

Paragraph content.

Section number, D2.4, M12.

Whenever minor details in those descriptions are updated for this present version, those details

will be highlighted in bold.

21

2 Reference Architecture models

Void (the contents provided in Section 2 of D2.4 apply).

2.1 Definitions and conventions used

Void (the contents provided in Section 2.1 of D2.4 apply).

2.2 Reference architectures for Industry 4.0

Void (the contents provided in Section 2.2 of D2.4 apply).

2.3 OPTIMAI reference implementation model

Void (the contents provided in Section 2.3 of D2.4 apply).

22

3 Architecture refinement approach

This Section presents the second iteration of the architectural design approach, as originally

specified in D2.4. For the sake of completeness, the sequence of implemented actions over the

course of a single iteration is summarized in Figure 4.

Figure 4: Architectural design approach within OPTIMAI (retrieved from D2.4, M12).

3.1 Technology exploration

Technology exploration encompasses a procedure where technologies and architectural models

relevant to the OPTIMAI goals and vision are identified and studied, in order to generate inputs

from relevant results reported in the frameworks of other national and international (preferably,

EU-funded) Research & Development (R&D) activities, and distil them into the OPTIMAI

architecture design.

Section 3, D2.4, M12.

Technology exploration with respect to the architectural update refers to the further elaboration

of identified technologies to be brought into the architecture (i.e., partners’ background). This

has been applied by thoroughly studying the various deliverables of the project, in which these

technologies have been elaborately described. This has enabled the OPTIMAI system architects

to identify architectural requirements related to information exchange between modules (such

as the definition and refinement of exposed and consumed APIs to and from architectural

components), as well as proposed deployment considerations and characteristics that relate to

the system’s topological description.

The list of deliverables surveyed is as follows:

Technology
exploration

Identification/acquisition of
know-ledge
and technology from ex-ternal
sources (e.g., relevant re-search
projects) along with sur-veying
the state of current stan-dards
and reference implemen-
tations reported in the scientific
literarure.

Top-down design

Based on a common
understan-ding of the final
system beha-viour and
functionality (UCs' re-
quirements & usage scenarios),
outline the role and
functionality of subsystems and
components to fulfill
requirements of the pro-ject.

Bottom-up
refinement

Detailed specification of all indi-
vidual elements of the system,
identification of existing
compo-nents (background) or
compo-nents partners will
create (fore-ground),
connecting them to re-fine, and
eventually form the overall
architecture.

23

Table 2: Deliverables surveyed as part of the second technology exploration architectural design phase

Deliv. Number Deliv. Title Addressed Modules/Subsystems (D2.4)

D3.1 Multisensorial data acquisition

and actuation network

Quality Control Sensors Network

Middleware

On-the-edge processing for acquisition

and actuation (OPR4AA)

D3.8 Blockchain framework for

traceability and data integrity -

1st version

Blockchain Framework components

D3.10 AI Components for Quality

Control toward Zero-Defect

Manufacturing

AI-based Production Monitoring

Component

D6.1 Decision support and early

notification framework_1st

version

OMIDES Back-end

OMIDES Front-end

Manufacturing (re-)configuration Service

Defect Detection and Quality Control

Service

D6.3 Intelligent Marketplace for AI

Sharing and Scrap Reuse - 1st

Version

Intelligent Marketplace Back-end

OPTIMAI Intelligent Marketplace

Dashboard

3.2 Top-down design

Top-down design is the process of dividing the system into the elements it is composed of, leading

to the identification of any-level subsystems and base components. The purpose of this phase is

to gain an understanding of the main function of the components and how they will

communicate with each other.

Section 3.1, D2.4, M12.

Following the first version specification of the OPTIMAI Architecture and technology exploration,

the top-down design of the architecture was refined, so as to include all newly introduced

components (e.g., the OPTIMAI Agent at the QCS Network), as well as merge, refine, break-down

or remove obsolete components (i.e., individual sensors) from the D2.4 version. To this end, the

vertical segmentation of the architecture as presented in D2.4 was maintained, and components

were placed inside the larger subsystem where they were deemed more appropriate based on

their deliverable descriptions. Initial flows to and from components were re-designed, so as to

be abstractly described and prepared for presentation to the project partners in the ensuing

24

bottom-up phase. In cases where such descriptions were not clear, or were ambiguous,

individual partners were contacted to elaborate further. In some cases, components were

further broken down, or placed within different subsystems altogether.

Eventually, the top-down view of the architecture yielded 38 total components and modules,

which are presented in Table 3, below. An asterisk (*) is used to indicate that a component was

identified during the refined technology exploration phase, and is therefore not mentioned in

D2.4, while a revision superscript (r) is used to indicate a component with a revised name and

role (with the previous corresponding component, if applicable, in brackets).

Table 3: List of identified main and total functional blocks in the OPTIMAI top-down architectural stack

Node
Component

No.
Component(s)

Partner(s)

responsible

Implementation

Example (Product,

or document

Section)

Quality Control

Sensors

Network

001 OPTIMAI Agent* FINT Section 14.1.1.1

002 OPTIMAI SoftSensor*
CERTH

UNIMET
Section 14.1.1.2

003
EyeVision Web

Service*
EVT Section 14.1.1.3

Edge Computing

Modules[r]

- Middleware FINT Section 4.1.3

-

On-the-edge

processing for

acquisition and

actuation (OPR4AA)[r]

(AI Edge Processing

Service module)

ENG Section 4.1.4

Middleware

004
Cybersecurity Defence

Module
FINT Section 14.1.1.4

005

IoT Agent[r]

(Multimodal Data

Collection Agent)

FINT Section 14.1.1.5

006 FINoT Platform FINT Section 14.1.1.6

007 Middleware Service FINT Section 4.1.3.4

OPR4AA[r] 008 Data Flow Controller* ENG Section 14.1.1.8

25

009 Analytics Engine* ENG Section 14.1.1.9

010
Hadoop Distributed

File System (HDFS)*
ENG Section 14.1.1.10

Cloud

Computing

Modules[r]

-
Middleware Cloud

Data Repository
FINT Section 4.1.6

-
Blockchain

Framework[r]
CERTH Section 4.1.7

-

Operator-Machine

Interaction & Decision

Support (OMIDES)

Back-End[r]

CERTH Section 4.1.8

-

Intelligent

Marketplace Back-

End[r]

FINT Section 4.1.9

- AI Framework[r]
UTH

CERTH
Section 4.1.10

- DT Framework[r] VIS Section 4.1.12

Middleware

Cloud Data

Repository

011 File Storage FINT Section 14.1.1.11

012 Historical Data FINT Section 14.1.1.12

013 Open Datasets FINT Section 14.1.1.13

Blockchain

Framework[r]

014
Blockchain API

Service*
CERTH Section 14.1.1.14

015 IPFS Node CERTH Section 14.1.1.15

016

Access Control

Smart Contract[r]

(Access Control

Service)

CERTH Section 14.1.1.16

017

Firmware/Software

Validation Smart

Contract[r] (Firmware

validation Service)

CERTH Section 14.1.1.17

018 Model and Data

Integirty Smart
CERTH Section 14.1.1.18

26

Conteact[r] (Data

Integrity

Service / AI Model

Integrity Verification

Service)

OMIDES Back-

End[r]

019
Pose Estimation

Service
CERTH Section 14.1.1.19

020
Activity Recognition

Service
CERTH Section 14.1.1.20

021
Instance

Segmentation Service
CERTH Section 14.1.1.21

022
Decision Support

System (DSS) Engine*
CERTH Section 14.1.1.22

023
Conversational Agent

Back-end*
CERTH Section 14.1.1.23

Intelligent

Marketplace

Back-End[r]

024
Marketplace Back-end

Service*
FINT Section 14.1.1.24

025

Identity Management

System (IDM)[r]

(Marketplace

Authorisation)

FINT Section 14.1.1.25

026
AI Algorithm

Catalogue*
FINT Section 14.1.1.26

027
Scrap Reuse

Catalogue*
FINT Section 14.1.1.27

AI Framework[r]

028
Manufacturing (re-)

configuration Service

CERTH

FORTH
Section 14.1.1.28

029

AI-based Production

Monitoring

Component[r]

(Production

Monitoring & Quality

Control Service)

UTH Section 14.1.1.29

030 Defect Detection and

Quality Control
CERTH Section 14.1.1.30

27

Service[r] (Defect

Detection &

Prediction Service)

DT Framework[r]

031
DT Process Models[r]

(Process Digital Twins)
VIS Section 14.1.1.31

032
Virtualized Sensors

Network
VIS Section 14.1.1.32

End-users’

applications[r]

033

OPTIMAI Intelligent

Marketplace

Dashboard[r] (OPTIMAI

Intelligent

Marketplace

Customer Front-end)

FINT Section 14.1.1.33

034

Visual Components

Software[r] (Visual

Simulation Engine)

VIS Section 14.1.1.34

038 MAIAR Software* FORTH Section 14.1.1.38

- OMIDES Front-end[r] CERTH Section 4.1.14

OMIDES Front-

end[r]

035
Early Notification

Framework*
CERTH Section 14.1.1.35

036 Visual Analytics[r] CERTH Section 14.1.1.36

037
Conversational Agent

Interface*
CERTH Section 14.1.1.37

3.3 Bottom-up refinement

Bottom-up design refers to the process in which the components of a system are specified in

detail. During this process units are linked to form a more complex system. For the specification

of the OPTIMAI architecture, the bottom-up approach was subsequent to the top-down

approach. During this phase, technical partners provided their input with regard to the

technologies and software components they are planning to contribute to the project. These may

be components that partners bring to the project as part of their background, or they have

developed as part of the work carried out in the framework of the project Tasks (foreground).

Section 3.2, D2.4, M12.

Architecture refinement for the period between M12 (D2.4) and M18 (D2.5) concluded with a

second bottom-up refinement phase, in which all collected components listed in Table 3, as well

as those to be reported in upcoming deliverables (identified per Task), were elaborated and

28

given substance through a final, elaborate component refinement template (see Appendix A).

The exercise aimed at offering insight into the architectural components required for the

technical realisation of the information flows specified for the project use case (Section 6). The

template served as a means of gathering information, especially about the novel functional

blocks identified in the top-down specification (Section 3.2), which eventually form the concrete

OPTIMAI architecture.

The specification was undertaken through two architectural workshops held in Weeks 21and 23

of 2022, which aimed at presenting the refinements based on the outputs of technology

exploration and top-down specification (Week 21) as well as gather final needed information and

insight on components, whose templates were gathered (Week 23). Along with the role and

responsibilities of the components, additional information was gathered, such as COMPONENT

DIAGRAMS, exposed interfaces, dependencies on software (and hardware) elements, and a

deployment diagram to form a basis of the deployment architectural view. The outcomes of this

exercise constitute the contents reported in Section 4 of this deliverable.

3.4 Ethical compliance – Compliance through Design

Void (the contents provided in Section 3.3 of D2.4 apply).

29

4 OPTIMAI Architecture - Functional view

This Section presents the final list of architectural elements and building blocks (both individual

components and subsystems, as identified in Table 3) that together combine to deliver the

complete functionality of the OPTIMAI system. The following paragraphs will describe these

components roles and responsibilities within the overall function of the OPTIMAI framework,

along with the synergies that they should implement with other components, both internal and

external to the OPTIMAI system. Each component and subsystem will be further elaborated by

means of a Unified Modelling Language (UML) component diagram, providing a view on the

static implementation of each system and subsystem. The high-level generic, service-oriented

architectural diagram of the final system is depicted in Figure 5.

This architectural view presented follows the approach of segmenting the envisioned IT systems

on a vertical axis, thus adopting a layered design that indicates the high-level classification of

the different technological components in accordance to their contribution to the key user

requirements of the project use cases. The functional architecture stack depicted in Figure 5 is

further aimed at highlighting rudimentary principles of the OPTIMAI development over time,

such as the properties, relationships and execution environment of the functional elements.

Each layer corresponds to a major subsystem driving the flow of information from top to

bottom (i.e., from the sensing IoT hardware all the way to the users’ equipment). These

subsystems/nodes are: (i) the Quality Control Sensors Network; (ii) the Edge Computing

Modules; (iii) the Cloud Computing Modules; and (iv) the Users’ Applications. Specific alignment

to the deployment characteristics of each subsystem are discussed in more detail in Section 6.

The purpose of this Section is to instead highlight the analogy of use case requirements to the

different functional blocks’ responsibilities (i.e., making sure component functionalities are

well-represented, and that they can be properly matched against elicited system requirements).

The descriptions are provided at a functional level, which omits confronting specific

implementation details at architectural level, as they are particular to the development Task

delivering each component to the final integrated system.

In addition to the definition of components’ behaviours and interrelations, care has been taken

to refine the original architecture reference model (discussed in Section 2.3) in accordance to

well-defined standards (as discussed in Section 2) so as to support interoperability. Such an

alignment enables extension of the OPTIMAI solution in a manner that would enable its

replication for use cases outside the ones explicitly defined in the scope of the project, within

the context of both I4.0 (via a direct mapping of OPTIMAI to the RAMI 4.0 cubic model) and IIoT

(by applying mappings drawn between IIRA and RAMI 4.0) scenarios.

Section 4, D2.4, M12.

30

Figure 5: OPTIMAI Functional architecture view – component diagram.

OPTIMAI AgentOPTIMAI Agent

Quality Control Sensors (QCS) Network (UC-Specific)

Cybersecurity
Defense Module

Edge Computing Modules

Middleware

IoT Agent

FINoT Platform

Middleware Service

OPTIMAI OPR4AA

Cloud Computing Modules

Private Cloud Data Repository

Blockchain AI Framework

Defect Detection
& Quality Control

OMIDES Back-End

End-Users’ Applications

O
P

TI
M

A
I A

u
gm

en
te

d
 R

ea
lit

y
So

lu
ti

o
n

User Equipment

Desktop PC /
Laptop

Marketplace Front-end

Back-end Service

Smart surface …

M
A

IA
R

 S
en

si
n

g
&

st

re
am

in
g

Sm
ar

t
G

la
ss

es
Pe

rv
as

iv
e

vi
su

a
liz

a
ti

o
n

,
re

co
m

m
e

n
d

a
ti

o
n

 a
n

d
 in

te
rp

re
ta

ti
o

n
 (

M
A

IA
R

 S
o

ft
w

a
re

)

Hadoop Distributed File System

Historical Data File StorageOpen datasets

Decision Support
System Engine

Context-awareness

OMIDES Front-End

Conversational
interfaces

Early Notification

Legacy sensors OPTIMAI (Smart) sensors

Sensor 1 … Sensor N

OPTIMAI Agent

…Sensor 2

Actuators
(UC-Specific)Actuator 1 Actuator 2 …

Analytics Engine

Data Flow Controller

Marketplace Back-End

OPTIMAI IDM

AI Algorithm
Catalogue

Blockchain
API Service

OPTIMAI Private BC EVM
Access Control

Smart Contract (SC)

Firmware/Soft-
ware Validation SC

Model and
Data Integrity SC

AIPMC

Conversational agent

Manufacturing (re-)
configuration service

DT Process models

Simulation Front-end

DT Framework

Virtualized Sensors

Visual
Components

4.4

OPTIMAI
Marketplace
Dashboard

EyeVision
Web

Service

CERTH
Sensor 1

UNI
Sensor 2

EVT
Sensor N

Input AI

Actuator 3

CERTH SoftSensor

Input Analytics

UNIMET SoftSensor

IPFS

Scrap Reuse
Catalogue

Smart Quality Control

Visual Analytics

31

In addition to the vertical segmentation, the architectural stack presented in Figure 5 is further

distinct into key emerging technologies being adopted into I4.0 enterprises to realize “smarter”

manufacturing processes and less wasteful production. These are:

• Multi-sensory data acquisition (green);

• AI analysis (blue);

• Distributed ledger technologies (yellow);

• Context-aware recommendation (red); and

• Digital-twinning for production optimization inference (purple).

The remainder of this Section is organised as follows: Section 4.1 delivers on the descriptions for

the subsystems and components depicted in Figure 5, which are directly derived from the

templates handed out to project technical partners during the bottom-up design specification, as

discussed in Section 3.3. With the functional perspective in place, Section 4.2 then discusses the

alignment of the OPTIMAI architecture with the two major standards-led reference architectures,

RAMI 4.0 and IIRA.

Section 4, D2.4, M12.

4.1 OPTIMAI functional blocks

The following sub-sections provide a description for each of the functional blocks (both

components and larger subsystems) comprising the OPTIMAI system as illustrated in Figure 5.

Wherever possible, core system entities (at any-level, i.e., component or subsystem) will be

described also in relation to its interdependencies with other OPTIMAI components (thus

elaborating on its role in the overall information structure supported by the architecture), as

well as the primary interactions formed with other functional elements by means of expected

inputs and outputs driving the foreseen runtime behaviour

Section 4.1, D2.4, M12.

The subsystem and descriptions below are derived from both the technology exploration phase

as well as the high-level documentation of the various functional aspect of each component

delivered by that component’s owner during the bottom-up specification stage of the

architecture (re-) definition. The latter was carried out through the elaborate component

refinement templates (pages 3-6) included in this report in Appendix A. Where relevant, high-

level component diagrams are used to better illustrate structure and interdependencies among

components.

4.1.1 Quality Control Sensors Network

The Quality Control Sensors (QCS) Network subsystem is comprised of all IoT sensor devices

employed for data collection regarding current production parameters. A variety of device

types have been identified during the first year of the project in the context of Task 3.1

“Multisensorial data acquisition and actuation network”, and a complete list of devices and

specifications will be provisioned with D3.1 due in M16.

32

Section 4.1.1, D2.4, M12.

The original elaboration of the QCS Network closely mirrored the provisions of the conceptual

architecture established at project preparation level (before signing of the GA), and thus focused

on sensors at a hardware-level. Since the release of D3.1, the QCS Network has been elaborated

to include a distinct definition for hardware and software, or softwarized components.

Hardware-wise, the QCS Network consists of the range of existing (legacy) sensors in each of

the pilot sites (specified in Section 3.1 of D3.1), alongside those developed within the lifetime of

the OPTIMAI, specifically for the project use cases (as elaborated in Section 3.2 of D3.1). These

latter sensors will be developed by OPTIMAI Consortium members CERTH, UNIMET and EVT, and

all involve higher level functions executed either stand-alone, or utilising direct communication

with a nearby PC (e.g., Power over Ethernet - PoE). These sensors will be extended by software

components that can execute industrial vision applications, hence giving substance to the

OPTIMAI “smart” sensors array.

To enable the intercommunication of the hardware components with the OPTIMAI software

platform, additional modules were introduced to the internal QCS Network architecture, as

depicted in Figure 5. The remaining paragraphs in this Section will aim at describing these

elements and rationalize their addition to the OPTIMAI architectural stack.

4.1.1.1 001 OPTIMAI Agent(s)

The template for the OPTIMAI Agent component was originally described in Section 2.4 of D3.1.

In that document, OPTIMAI Agents were explicitly defined as “a software program that acts as a

network router, routing sensor data between the sensors and the Middleware. They can handle both

inbound and outbound traffic. Outbound traffic streams are used for sending sensor data to the

Middleware, while inbound traffic is used for receiving action commands”. At least three variants to

this OPTIMAI Agent template will be developed, one for each of the pilot sites, to accommodate

the intricacies of the pilot sites’ data collection platforms, e.g., the pre-existing sensors and IoT

devices installed, communications protocols used, manufacturing data APIs used for obtaining

access to the collected data, etc. For a complete overview, readers are referred to D3.1.

The purpose of the OPTIMAI Agent inside the architecture is to provide a means for the system

to obtain data from pilot sites’ platforms and databases (where existing sensors deposit data – a

process that is not subject to change for the purposes of the OPTIMAI project) and forward it to

the Middleware (which does not poll for data in and of itself). In addition, and similar to the data

acquisition pipeline, the OPTIMAI Agent is used to forward and apply actuation commands

coming from the Middleware to the actuators inside the OPTIMAI pilot projects (as described in

Section 4 of D3.1).

Key functional aspects and features provided by the OPTIMAI Agent(s) include the following:

• Collect and filter existing sensors’ data by implementing the the proper communication

protocols with the pilot’s existing data collection platform.

• If necessary, translate sensor data to the Middleware’s communication protocols.

• Send the data to the Middleware using one of the available interfaces the latter exposes.

• Subscribe on specific topics for actuation commands.

33

The high-level functional architecture of the OPTIMAI Agent is depicted in Figure 6:

Figure 6. OPTIMAI Agent component diagram.

4.1.1.2 002 OPTIMAI SoftSensor(s)

A Software Sensor (SoftSensor) is a software that integrates and processes a number of

measurements coming from one or more hardware sensors, and uses these measurements to

generate new, higher-order measurements by executing a range of different algorithms,

including, AI-based segmentation, object detection and image classification. The purpose of the

OPTIMAI SoftSensors is to essentially “create” additional measurements utilizing industrial

vision applications, i.e., as if a dedicated hardware sensor was deployed to obtain those

measurements.

Within the context of OPTIMAI, at least two variants of the SoftSensor template are defined (as

specified in D3.1):

• The CERTH SoftSensor, which comprises a 2D area scan camera and an NVIDIA Jetson

module that is used to run deep convolutional network algorithm to regress 3D quality

inspection metrics, such as the volume of glue deposited on PCBs in the MTCL pilot site.

• The UNIMET SoftSensor, which combines the proprietary UNIMET Optiscan scanner and

UNIMET M3 data analytics software as a means to propagate post-processed data (i.e.,

dimensional assessment of point cloud data) to the Middleware.

The high-level functional architecture of the OPTIMAI SoftSensors is depicted in Figure 7:

<<Node>>
Middleware

<<Node>>
Edge device

<<Component>>
OPTIMAI Agent

<<Component>>
Cyber-security

Defense Module

Actuator

Manufacturing
Data

<<Component>>
Middleware

Service

34

Figure 7. SoftSensors component diagram.

4.1.1.3 003 EyeVision Web Service

The EyeVision Web Service is a core functional block provisioned by EVT. It is a core component

of EVT’s industrial vision sensors, offering AI-processing and seamless process integration with

the OPTIMAI architecture. The system is capable of executing different industrial vision

applications. It supports the acquisition of 1D, 2D and 3D images, including input from thermal

or multi spectral cameras, and offers a range of different algorithms to be executed, including

AI-based segmentation, object detection and image classification. In addition, it implements

communication clients based on various protocols (e.g., OPC UA, MQTT, REST, alongside other

state-of-the art protocols) to establish communication with the Middleware.

Key functional aspects and features provided by the EyeVision Web Service include the following:

• Support for single, or multi camera systems, and capability to combine different image

types.

• A user of the software can configure the application based on an extensive tool box of

algorithms.

• Support for deep learning based neural networks provisioned through built-in Graphical

Processing Unit (GUI) used for annotation and training (on specific platforms).

• Scalable systems (hardware independent).

• Communication interfaces support a big range of protocols (MQTT, OPC UA, Profinet,

Modbus, etc).

An important capacity supported by the EyeVision Web Service, as per the provisions of Section

5.4.2 of D3.1 is the capacity of the module to provide a C++ plugin interface allowing for the

deployment of lightweight enough algorithms to be deployed and executed directly into the

EyeVision software, hence bypassing the Middleware. This is especially useful for time-critical

<<Node>>
Middleware

<<Node>>
Edge device

<<Component>>
Input

<<Component>>
Cyber-security

Defense Module

Sensor
measurements

<<Component>>
Middleware

Service

<<Component>>
SoftSensor AI/Data
Analytics software

35

operations (e.g., minor calibrations that should be executed within milliseconds), rapid execution

and reducing of downstream computations is highly desirable.

The high-level functional architecture of the EyeVision-enabled EVT industrial sensors is depicted

in Figure 8:

Figure 8. EVT Industrial vision sensors with EyeVision Web Service component diagram.

4.1.2 Edge Computing Modules

Edge computing is emerging as a critical enabler in smart manufacturing, enabling the rapid

execution of code originally intended for Cloud computing resources on either the devices

themselves, or a gateway device or Personal Computer (PC) in close proximity. To capitalise on

this emerging paradigm, the OPTIMAI architecture incorporates subsystems and modules for

deploying on-the-edge intelligence regarding monitoring and control of specific (“smart”)

sensors in the QCS Network subsystem […]. This enables OPTIMAI to dynamically manage the

various acquisition parameters.

Section 4.1.2, D2.4, M12.

In support of this edge node architecture, the OPTIMAI Edge Computing Modules incorporate

the following subsystem modules:

• the Middleware subsystem (Section 4.1.3), which provisions services for: (i) the collection

of all sensors’ data in real time; (ii) the application of cybersecurity at the acquisition level

(as soon as data enters the system); (iii) sensor health monitoring functions; and (iv)

coordination of the exchange of information between the edge and cloud modules.

Section 4.1.2, D2.4, M12.

• the On-the-edge processing for acquisition and actuation (OPR4AA) platform

(Section 4.1.4), which enables the deployment and operation of AI services on-the-edge,

as specified in D3.1.

4.1.3 Middleware Subsystem

The Middleware subsystem provisions secure interfaces between the various units,

components, sensors and subsystems. It supports the network protocols required to exchange

control and store data and information needed to facilitate operations and services in an

<<Node>>
Middleware

<<Node>>
Edge device

<<Component>>
EyeVision Software

<<Component>>
Cyber-security

Defense Module

Actuator

EVT Sensors Data
<<Component>>

Middleware
Service

36

environment with many different networking and system components. As such, the Middleware

subsystem incorporates all necessary services required for integrating the various sensor

devices in the QCS Network within a unified framework. Aside from data collection, a core

purpose of this subsystem is to expose a unified interface to interact with the other OPTIMAI

platform components, exposing all necessary functionalities by establishing all necessary API

endpoints (based on the Representational State Transfer - REST architecture) towards the

interdependent platform components.

This subsystem is based on FINT’s commercial FINoT Platform solution, albeit extended to

implement the necessary functionality dictated by the project objectives. Based on the

architecture of the FINoT solution, the Middleware subsystem will provision functions toward:

(i) sensors’ data acquisition and registration; (ii) facilitating storage, processing and

aggregation (on the edge); (iii) incorporate cyber-security defence in the form of

authentication/authorisation routines; and (iv) expose functions through a powerful REST API

interface.

Section 4.1.3, D2.4, M12.

The Middleware provides the necessary interfaces for communication with devices, sensors and

actuators. It is responsible for data collection, management and querying; provides a unified

storage layer for object, files and historical data; provides Complex Event Processing (CEP) and

exposes external module interfaces for other subsystems within the OPTIMAI architecture.

The high level functional architecture of the Middleware is depicted in Figure 9.

4.1.1.4 004 Cybersecurity Defence module

Void (the contents provided in Section 4.1.3.4 of D2.4 apply).

4.1.1.5 005 IoT Agent

Void (formerly known as the Multimodal Data Collection Agent, the contents provided in Section

4.1.3.1 of D2.4 apply).

37

Figure 9. Middleware component diagram

4.1.1.6 006 FINoT Platform

Void (the contents provided in Section 4.1.3.2 of D2.4 apply).

4.1.1.7 007 Middleware Service

Void (the contents provided in Section 4.1.3.3 of D2.4 apply).

4.1.4 On-the-edge processing for acquisition and actuation (OPR4A)

The OPR4AA Platform is an extension of ENG’s Digital Industry Data Analytics (DIDA) Platform,

which was originally described in Section 5 of D3.1. In that document, the was explicitly defined

as “a FIWARE/Apache based platform for Smart Industry that supports a variety of connectors /

components for every aspect of Smart Data Management and Integration as well as Data Persistence,

Data Sovereignty and Data Security”. Hence, the OPR4AA directly relates to the AI services

developed in OPTIMAI, and targets sensor acquisition optimization; real-time analytics modules;

and adaptation of intelligent manufacturing assets.

Intricate details about the implementation of the OPR4AA Platform are provisioned in D3.6,

delivered in parallel to the present report. For architectural purposes, a brief overview of the key

features and internal components will be elaborated in the following paragraphs.

Key functional aspects and features provided by the OPR4AA Platform include the following:

• It enables pre-processing of sensors data for an efficient dispatching to other OPTIMAI

components, and deployment of AI services on-the-edge, reducing execution latency.

• It allows analysis of big data using AI algorithms running on top of the DIDA modules

(briefly described in the following paragraphs).

<<Node>>
Edge device

<<Component>>
OPTIMAI Agent

<<Node>>
SoftSensor

<<Component>>
SoftSensor AI/Data
Analytics software

<<Node>>
Edge device

<<Component>>
EyeVision Software

<<Node>>
Middleware

<<Component>>
IoT Agent

<<Component>>
Context-broker

<<Component>>
Historical Data

<<Node>>
FINoT Core

<<Component>>
Cybersecurity

Defense Module

<<Component>>
IDM

<<Component>>
CEP Engine

<<Node>>
AI Framework

<<Node>>
Intelligent Marketplace

Back-end

<<Node>>
OMIDES Back-end

<<Node>>
Blockchain Framework

<<Node>>
DT Framework

REST API

38

• It enables data acquisition, pre-processing of data, and the overall enhancing of the on-

the-edge “smartness” of sensors.

The high-level functional architecture of the OPR4AA Platform is depicted in Figure 10:

Figure 10. OPTIMAI OPR4AA Platform component diagram.

4.1.1.8 008 Data flow controller

The OPR4AA Platform Data flow controller is a component responsible for managing,

distributing and automating flow of data between the Middleware and the other sub-modules

of the Platform. It is based on FIWARE Draco, a Generic Enabler based on the Apache NiFi

dataflow system. As such, it is responsible for exposing the FIWARE Draco interface consumed

by the Middleware. In addition, it can also invoke HTTP calls to the Middleware API for

distributing data to it, thus implementing a two-way information flow between the two functional

blocks (see Figure 10).

4.1.1.9 009 Analytics engine

The OPR4AA Platform Analytics engine refers to the modules responsible for the execution of

AI Algorithms on the edge. As was predicated in D3.1, it will be based on the Apache Spark1

engine, executing (mostly) Python-based AI algorithms, without however excluding the capacity

to bridge the execution of algorithms based on different architectures, pipelines and languages.

To invoke job execution tasks for the AI algorithms on Spark, the Apache Livy2 REST Service will

be employed, receiving input data from the Data flow controller. AI results will be returned to

the latter component so as to be communicated back to the Middleware.

4.1.1.10 010 Hadoop Distributed File System (HDFS)

OPR4AA Data storage will implement the Hadoop Distributed File System (HDFS), intended for

the reliable storage of very large files (e.g., such as the ones produced by EVT point cloud data)

over distributed physical resources. The Analytics engine (Spark) will be configured to both read

1 https://spark.apache.org/
2 https://livy.apache.org/

<<Node>>
OPR4AA Platform

<<Node>>
Analytics Engine

<<Component>>
Data Flow
Controller <<Component>>

Apache Livy

<<Component>>
Apache Spark

<<Component>>
HDFS

<<Node>>
Middleware

https://spark.apache.org/
https://livy.apache.org/

39

and write data to and from HDFS, since the two can be deployed together utilising various

deployment options.

4.1.5 Cloud Computing Modules Subsystem

The Cloud Computing Modules subsystem contains the OPTIMAI components that are expected to

be deployed in a cloud computing environment, due to their foreseen needs in storage and

computational power (e.g., for processing-heavy AI and other routines).

Section 4.1.4, D2.4, M12.

The OPTIMAI Cloud Computing Modules consist of the following subsystems and modules:

• the Middleware Cloud Data Repository subsystem (Section 4.1.6), which acts as the

centralised storage point of the entire OPTIMAI system.

• the Blockchain subsystem (Section 4.1.7), which is responsible for maintaining a

distributed ledger of all critical operations, the employment of smart contracts to automate

several production processes, and the provision of data integrity verification mechanisms.

Section 4.1.4, D2.4, M12.

• the Operator-Machine Interaction & Decision Support (OMIDES) Backend

subsystem (Section 4.1.8), which utilizes the results of the defect detection and

prediction, status of the production line and operation (both originating at the AI

Framework), and simulation routines (at the DT Framework), provides the information

needed to perform re-configuration automations.

• the Intelligent Marketplace Back-End subsystem (Section 4.1.9), which will facilitate

user-generated data storage and transactions functionality for the envisioned OPTIMAI

scrap and AI models marketplace solution.

Section 4.1.4, D2.4, M12.

• the AI Framework (Section 4.1.10), which executes smart quality control processes and

calculates production optimization parameters based on predictive analytics using the

powerful resources available the cloud.

• The DT Framework (Section 4.1.11), which provides the resources necessary for the

virtualization and simulation of the production line.

4.1.6 Middleware Cloud Data Repository Subsystem

Void (the contents provided in Section 4.1.5 of D2.4 apply).

4.1.1.11 011 File Storage

Void (the contents provided in Section 4.1.5.1 of D2.4 apply).

4.1.1.12 012 Historical Data

Void (the contents provided in Section 4.1.5.2 of D2.4 apply).

4.1.1.13 013 Open Datasets

40

Void (the contents provided in Section 4.1.5.3 of D2.4 apply).

4.1.7 Blockchain Framework

The Blockchain subsystem will be responsible for dealing with system objectives regarding the

security, privacy, traceability, integrity, compatibility and interoperability of data storage and

exchange. In addition, a blockchain-based AI model integrity validation mechanism will be

provisioned. The foreseen developed Cloud-based subsystem will be provisioned by

implementing a Blockchain-as-a-Service (BaaS) model. In this regard, a blockchain Application

Programming Interface (API) will be exposed to enable traceability and validity of every data

transaction occurring in the system, whether it be a collection of measurements, a

reconfiguration request, or a sensor health check.

Section 4.1.6, D2.4, M12.

The Blockchain framework was described in full (including implementation details) in D3.8. Its

responsibilities include firmware validation, access control, and data integrity, as well as

developing a logging/auditing method for the system's important functions, such as sensor

actuations. All of the important system operations are recorded as immutable and verifiable

transactions in a blockchain network in the context of this data exchange. In accordance to

Section 2.6 of D3.8, it is implemented in a Private Ethereum network, using a “Proof of Authority”

consensus mechanism.

Smart contracts, i.e., programs that can be executed inside an Ethereum Virtual Machine (EVM),

are used to automate a range of tasks inside the manufacturing line. Therefore, the specific

objectives pursued by the Blockchain within the OPTIMAI architectural stack are organised in the

following Smart Contract (SC) modules:

• Access control (Section 4.1.1.16): An access control mechanism is integrated to prevent

unauthorized users from carrying out important system operations.

• Firmware and software validation (Section 4.1.1.17): All important system processes

will be recorded as immutable and verifiable transactions.

• Model and Data Integrity (Section 4.1.1.18): The integrity of the software and firmware

versions installed, the AI models used, and the measurements supplied by the system's

sensors using blockchain-based data integrity methodologies.

The high-level functional architecture of the Blockchain Framework is depicted in Figure 11.

Individual components depicted in this diagram will be presented in more detail in the

paragraphs below.

4.1.1.14 014 Blockchain API Service

The Blockchain API Service is described in D3.8. It will be a gateway component exposing a

northbound interface toward the Middleware accepting HTTP POST requests to receive data

from the QCS Network. It further exposes a southbound interface to communicate with the

41

Figure 11. OPTIMAI Blockchain Framework component diagram

Blockchain smart contracts with the use of Web3.js endpoints. In addition, it will integrate with

an InterPlanetary File System (IPFS) node (see Section 4.1.1.15) to obtain unique hash values for

each data stored on the Ethereum blockchain/side chain architecture elaborated in D3.8.

4.1.1.15 015 IPFS Node(s)

IPFS Nodes are used to implement the content-addressed block storage system needed for the

Blockchain framework. Its role, in accordance to D3.8, is to calculate a unique hash value for data

and provide it to the smart contracts, which will then store this value as transactions over

Ethereum. IPFS Nodes hence implement both distributed data storage, and encryption.

Depending on the amount and scale of data, one or more private IPFS Nodes may be needed

per pilot site.

4.1.1.16 016 Access Control Smart Contract

The Access Control Smart Contract has been elaborated in D3.8 as implementing the

“functionality of the system for allocating or denying authorization to a user based on his request to

perform an action on a protected resource or object”. It is a smart contract EVM program that

operates on top of the blockchain, used to validate and execute Role-Based Access Control

(RBAC) mechanisms to determine whether a user requesting data from the Blockchain has the

proper rights to access the hash of the requested data. This is achieved by exposing a REST API

toward the Middleware, which, as specified in D3.8, will “contain information about the Ethereum

address, the role of the address, the Authorization of the role and the permission of the role. This

information will be stored on the private Ethereum network”.

4.1.1.17 017 Firmware/Software Validation Smart Contract

As specified in D3.8, the Firmware/Software Validation Smart Contract is an EVM program

used to verify transactions related to firmware updates and the assigning of a software

configuration to a sensor (i.e., one with built-in configuration agent, such as EVT sensors). Its role

is to assert validity of said firmware or software configuration, by storing a new block to the

distributed ledger that will include information, such as the IP address of the sensor, the versions

of the firmware/software prior to and after the update, a timestamp and a hash value for the

new firmware/software obtained by the IPFS. This hash is then used by the sensor agent in a

<<Node>>
Blockchain Framework

<<Node>>
Ethereum Virtual Machine

<<Component>>
Blockchain API

Service

<<Component>>
Access Control SC

<<Component>>
Firware/Software

Validation SC

<<Component>>
IPFS Node

<<Node>>
Middleware

<<Component>>
Model & Data

Integrity SC

42

subsequent query to the blockchain (forwarded whenever a binary is sent to the senor for

updating) to assure validity of the update process.

4.1.1.18 018 Model and Data Integrity Smart Contract

The Model and Data Integrity Smart Contract, as explained in D3.8, is an EVM program used

to “enable the immutable record of AI system choices and activities, resulting in a more trustworthy

AI”. The contract will be utilised to keep track of both the AI model, as well as the data used to

develop this AI model. This will allow traceability of the AI model evolution, since it allows user

to check not only the model itself, but also the learning history behind it. This verification

mechanism is employed so that operators can be assured of using the correct AI model for a

given operation, by comparing hash values of the model to be deployed with the one intended.

4.1.8 OMIDES Back-End Subsystem

The OMIDES Back-End subsystem has been described in Section 2.1 of D6.1 as providing “the

context in which the operator is working at a given time (e.g. user’s task, post), the operator’s relative

position with equipment (to know which is the right person for imminent (re)-configuration), as well as

the defective products detected in relation to the operators’ position (to act accordingly)”. In this

respect, the key features of the OMIDES Back-End are summarised as follows:

• Provide the OPTIMAI stack with context-awareness components toward realizing an

early notification framework, by employing:

o Activity Recognition: detect and recognize the activities of the operator in the

shop floor (e.g., tasks, gestures)

o Instance Segmentation: detect objects of interest and separate them from the

background by producing pixel-wise segmentation masks. Objects of interest are

considered to be the produced parts and their constituent modules and

production machines.

o Pose Estimation: estimate the pose of the objects of interest (produced parts,

production machines) in the AR environment, thus obtaining their relative position

with respect to the operator.

• Facilitates the storage of user profiles and generation of alerts targeted at the appropriate

individual on the shop floor (by means of a Decision Support System [DSS] engine, see

Section 4.1.1.22), to perform re-configurations manually on the appropriate device

(running the OMIDES Front-end), and allowing for fast response depending on the current

context.

• Implements the necessary cloud-computing modules for enabling voice-enabled natural

language interactions with a conversational virtual agent (Section 4.1.1.23).

The high-level functional architecture of the entire Decision support system and early

notification framework, as described in D6.1 (including the OMIDES Front-end components) is

depicted in Figure 12, below:

43

Figure 12. OPTIMAI Decision support system and early notification component diagram

Individual components depicted in this diagram will be presented in more detail in the

paragraphs below, as well as in Section 4.1.14.

4.1.1.19 019 Pose Estimation Service

Void (the contents provided in Section 4.1.7.1 of D2.4 apply).

4.1.1.20 020 Activity Recognition Service

Void (the contents provided in Section 4.1.7.2 of D2.4 apply).

4.1.1.21 021 Instance Segmentation Service

Void (the contents provided in Section 4.1.7.3 of D2.4 apply).

4.1.1.22 022 DSS Engine

The DSS Engine will be responsible for storing and maintaining user profiles (constructed

through the use of a conversational agent, as explained in the following paragraph), which will

aim at supporting adaptable user interfaces at the OMIDES Front-end level (thus tailoring the

front-end experience in accordance to the collected user preferences and employee profile), as

well as ensure that generated data, quality results and potential alerts communicated to the

OMIDES Back-End originating at the AI Framework level, are forwarded to the appropriate

control terminal and the user authorized to view and take action.

4.1.1.23 023 Conversational Agent Back-End

In accordance to Section 5.2 of D6.1, a Conversational Agent is employed in selected pilot sites

to collect information on user preferences and as such, construct a profile of user-centered

settings based on aspects, such as the user’s role in the manufacturing process, years of

experience in that role and articulated preferences. At back-end level, the agent will implement

<<Node>>
OMIDES Back-End

<<Node>>
Context Awareness

<<Component>>
Decision Support

System Engine

<<Component>>
Activity Recognition

Service

<<Node>>
Middleware

<<Component>>
Pose Estimation

Service

<<Component>>
Instance Segmen-

tation Service

<<Component>>
Conversational
Agent Back-end

<<Node>>
OMIDES Front-End

<<Component>>
Early Notification

Framework

<<Component>>
Visual Analytics

<<Component>>
Conversational
Agent Interface

44

computation-intensive functions that will support the task of voice understanding, i.e., Natural

Language Processing (NLP) and more specifically, Automatic Speech Recognition, to process and

analyse natural language and translate spoken dialogue to textual data for the user’s profile.

4.1.9 Intelligent Marketplace Back-End

The OPTIMAI Intelligent Marketplace has been elaborately presented in D6.3. In that document,

the Back-end subsystem is identified as the core of the OPTIMAI Marketplace ecosystem. It

provisions all the necessary interfaces to interact with the AI algorithms installed on premises,

and supports the automated registration of scrap items. Key functional aspects and features

provided by the Intelligent Marketplace Back-end include the following:

• It provides a password-based user authentication and a role-based authorization

mechanism.

• It facilitates communication with the Middleware, where the latter will automatically

register the defective scrap items to the marketplace through an interface exposed by

the Marketplace Back-end Service.

• It receives, or places offerings for sale or purchase the scrap material from different

industries.

• It registers AI algorithms in the backend marketplace.

• It manages and reconfigures running AI algorithms in premises.

The high-level functional architecture for the entire OPTIMAI Intelligent Marketplace, as

described in D6.3 (including the front-end components) is depicted in Figure 13, below:

Figure 13. OPTIMAI Intelligent Marketplace component diagram

<<Node>>
Intelligent Marketplace Back-End

<<Component>>
Scrap Reuse
Catalogue

<<Component>>
Marketplace Back-

end Service

<<Component>>
IDM

<<Component>>
AI Algorithms

Catalogue

<<Node>>
Web Browser

<<Component>>
Early Notification

Framework<<Node>>
Middleware

45

The components specified in the above diagram are described in the following paragraphs, as

well as in Section 4.1.1.33.

4.1.1.24 024 Marketplace Back-end Service

The Marketplace Back-end Service component was originally described in Section 2.1 of D6.3.

The Back-end service lies at the core of the Back-end subsystem, and is responsible for exposing

a REST API (through reverse proxy) that supports the communication of all subsystem

components with external entities within the OPTIMAI architectural stack.

4.1.1.25 025 Identity Management System (IDM)

The IDM component implements identity and access management, as described in Section 3.2

of D6.3. Its aim will be to control access of users using a single set of login credentials.

Additionally, this component will implement Role-Based Access Control (RBAC) in order to

restrict access to specific functions provisioned by the Intelligent Marketplace Customer Front-

End for authorised users only based on their roles (e.g., seller, buyer). Each user is assigned a

role which defines the access level of the user for specific functionality The RBAC shall therefore

allow high-level management of access to certain API endpoints (and hence, certain

functionalities) only to those users that are meant to be able to use this functionality (e.g., only

the authorised seller can have access to a part listing seller’s UI).

Section 4.1.8.2, D2.4, M12.

4.1.1.26 026 AI Algorithm Catalogue

The AI Algorithm Catalogue has been defined in Section 3.3 of D6.3. It will be used as a storage

repository for AI Algorithms descriptors, which will be published by the Marketplace users

identified as AI Algorithm Providers. The descriptor will be used to fill in algorithm details in the

Marketplace front-end dashboard, whenever AI algorithms are browsed by Production Line

Operator role users in third parties, who aim at purchasing such AI models for increasing their

organizations’ production quality.

4.1.1.27 027 Scrap Reuse Catalogue

The Scrap Reuse Catalogue has been defined in Section 3.4 of D6.3. Its purpose is similar to the

AI Algorithm Catalogue, i.e., it is used to store identified defective parts (scrap) into the

marketplace, to be purchased by third parties. It will utilize a different descriptor template (see

D6.3), so as to list the part in a Scrap Reuse Offering, and make it available through the

Marketplace front-end dashboard to the appropriate users.

4.1.10 AI Framework

The AI Framework encapsulates all AI algorithms related to defect detection, prediction, root

cause analysis and recommendation of re-configuration settings. It hence combines different

algorithmic components that have been described in two of the project’s earlier deliverables,

namely, D3.10 (AI-based Production Monitoring Component [AIPMC]) and D6.1 (Defect

Detection and Quality Control Service). Since in this version of the OPTIMAI architecture, a

46

choice was made to disentangle AI and DT functionalities, the AI Framework is comprised of the

following modules (as described in D2.4):

• the Smart Quality Control subsystem (Section 4.1.11) for driving optimization of the

production through data-intensive defect detection and prediction routines.

• the Manufacturing (re-)configuration Service (Section 4.1.9.1) for the intelligent

orchestration of production equipment configuration.

Section 4.1.9, D2.4, M12.

The high-level functional architecture of the AI Framework is depicted in Figure 14.

Figure 14. OPTIMAI AI Framework component diagram.

The components comprising the Smart Quality Control subsystem will be elaborated further in

Section 4.1.11. The Manufacturing (re-)configuration Service, as not belonging to any subsystem,

is described in the next paragraph:

4.1.1.28 028 Manufacturing (re-)configuration Service

The Manufacturing (re)-configuration Service has been elaborated in D6.1. Based on the

functionality description provided throughout that document, the component embodies a

“reinforcement learning AI agent”, which is trained on data pertaining to detected anomalies

related to suboptimal operations in the production line (AIPMC) and the detection of upcoming

and existing defects (Defect Detection and Quality Control Service), and calculates equipment

parameters readjustments which realize the automation needed to overcome problematic

situations. The calculated parameters can either be applied automatically, or can be forwarded

to the OMIDES Back-end, where they are recommended to the appropriate individual, who can

then manually apply the proposed reconfiguration.

4.1.11 Smart Quality Control

Void (the contents provided in Section 4.1.11 of D2.4 apply).

<<Node>>
AI Framework

<<Node>>
Smart Quality Control

<<Component>>
Defect Detection &

Quality Control
Service

<<Component>>
AIPMC

<<Node>>
Middleware

<<Component>>
Manufacturing (re-)

configuration Service

47

4.1.1.29 029 AI-based Production Monitoring Component (AIPMC)

The AIPMC, and its functionalities have been extensively described in Section 1.2 of D3.10.

Therefore, it will only be briefly re-iterated in this Section. It is related to OPTIMAI’s objective of

developing AI methodologies for quality control in KLEEMAN, MTCL and TELEVES end-users:

• For the KLEE pilot site, the Hydraulic Power Unit will be monitored to (1) Check parts used

in assembly, and (2) Monitor operational data (pressure, speed, noise) to detect

suboptimal operation.

• For the MTCL pilot, circuits will be monitored to detect (1) defects during epoxy diffusion,

(2) defects from the sawing process.

• For the TVES pilot, the antenna line will be monitored to detect (1) part-defects and (2)

assembly errors.

The AIPMC also performs root-cause analysis to suggest cause of defects and suboptimal

operation. It therefore executes the following key functionalities:

• It retrieves part and assembly images from the Cloud Data Repository.

• It retrieves timeseries data from the Cloud Data Repository.

• It determines quality status of parts and assemblies.

• It determines operational quality from multisensorial data (timeseries).

• It suggests root-cause of defect/suboptimal operation.

• It submits quality status results to the Middleware.

4.1.1.30 030 Defect Detection and Quality Control Service

As described in brief in D6.1, the Defect Detection and Quality Control Service detects

upcoming and existing defects. It operates in parallel to the AIPMC, for, where the latter is

predisposed with uncovering what causes the production environment to be suboptimal, the

Defect Detection and Quality Control Service implements routines that both detect defects in

the currently inspected part or manufactured product (e.g., by detecting a mismatch of parts to

client order, defects in materials, etc.), as well as predicts upcoming defects (defect analysis) and

anomalies (i.e., out-of-the-ordinary measurement values) in the measurements (production

monitoring and quality control) with a probability score.

Consecutive measurements of previously produced parts are used to extrapolate future

measurements, on which the developed defect detection methodologies will be applied for the

detection of possible future defects. Several state-of-the-art deep architectures will be

examined to support the necessary functionality, such as Deep Residual Networks for defect

detection, and Long Short Term Memory (LSTM) and Generative Adversarial Networks (GANs)

for defect prediction.

Section 4.1.11.1, D2.4, M12.

4.1.12 DT Framework

The Digital Twinning Framework encompasses the different components that comprise

simulation routines and functionality of a DT environment. It is based on a modified version of

Visual Components 4.4 by VIS, a commercial 3D simulation and visualization solution for

48

discrete manufacturing. The solution allows simulating the entire production system at

different levels of granularity, from a simple sensor or actuator to a whole manufacturing

system with robotics, automation, logistics, and production flows.

Section 4.1.10, D2.4, M12.

Since the simulation is executed on the VC4.4 front-end solution, the components described in

the following sub-Section constitute the base for the simulation (the digital model), which is the

virtual representation of the physical assets in the virtual simulation space.

4.1.1.31 031 DT Process Models

Void (the contents provided in Section 4.1.10.1 of D2.4 apply).

4.1.1.32 032 Virtualised Sensor Network

Void (the contents provided in Section 4.1.10.2 of D2.4 apply).

4.1.13 End-users’ Applications

4.1.1.33 033 OPTIMAI Intelligent Marketplace Dashboard

The OPTIMAI Intelligent Marketplace Dashboard has been described in Section 3.1 of D6.3. It

constitutes a unified Single Page Application (SPA), which delivers a UI experience for users to

browse through Scrap Reuse Offerings and AI Algorithms. It supports login and registration

functionality to identify users as belonging to one of four basic stakeholders that will access the

OPTIMAI Marketplace, i.e., the Administrator, the Product Line Operator, the AI Algorithm

Provider and the Scrap Trader. Four dashboard views will expose different functionalities for

each user type.

As has previously been mentioned in Section 4.1.9, this component will communicate with the

Intelligent Marketplace Back-End for provisioning of the different services needed to satisfy

user requests.

Section 4.1.12.1, D2.4, M12.

4.1.1.34 034 Visual Components Software

The Visual Components Software will be a custom offering based on the VC4.4

commercial solution by VIS, and is aimed at realistically representing the DT using a rich 3D

graphics engine, while also exposing graphical UIs with bindings to the Digital Twinning

subsystem components for e.g., creating a virtual factory layout, or defining processes based

on tasks. In addition, a statistics UI available in VC 4.4 will be provisioned, enabling a user to

monitor the performance of the virtual factory according to the layout configuration created.

Section 4.1.12.2, D2.4, M12.

4.1.14 OMIDES Front-End application

The OMIDES Front-End is thoroughly explored in D6.1. It comprises a cross-platform (i.e., PC or

tablet) solution for supporting operators on the shop floor during the execution of their daily

tasks, with the intention being to optimize production and increase their efficiency. Facilitating

49

communication with the OMIDES Back-end (Section 4.1.8), it presents a visual environment for

both:

• Informs the user on the results of defect detection and the status of the production

environment based on the outputs of the AI Framework,

• Facilitates alerts to users to perform re-configurations manually on the appropriate

device, thus allowing for fast response depending on the current context (Early

notification framework).

The application comprises three subsystems, described in the following paragraphs.

4.1.1.35 035 Early Notification Framework

The Early Notification Framework is responsible for notifying the appropriate person in the

appropriate device for abnormal operations, predicted and detected defects so as to facilitate

an immediate (manual) response. Such notifications will be triggered by defect detection and

measurements anomalies detection events occurring in the Smart Quality Control (see Section

4.1.11). The design of the notifications content is addressed in Section 2.3 of D6.1, while its visual

output is described in Section 4.4 of that same report.

4.1.1.36 036 Visual Analytics

The Visual Analytics components of the OMIDES Front-end application encompass GUI

components presenting the analysed data visualizations to support operators and production

managers to make more time-consuming decisions to optimize the production in the long run.

Following best practices for responsive web applications’ design, and integrating well established

user experience principles (e.g., usability), it comprises a set of graph widgets and input items,

allowing users to tailor the visualization environments to their needs. These components are

described, and high-fidelity mock-ups are depicted in Section 4 of D6.1.

4.1.1.37 037 Conversational Agent Interface (CAI)

The Conversational Agent Interface (CAI) embodies an AI-based front-end tool for enabling

interaction of the user with the OMIDES Front-end, which will determine user preferences by

engaging in vocal dialogue with the user. Since the computation-intensive functions will occur at

the OMIDES Back-end (see Section 4.1.1.23), the CAI will incorporate functions for capturing the

users’ voice input, manage the dialogue flow (i.e., selecting which questions to ask), and

synthesize speech to respond to users’ remarks in an audible format. The agent front-end has

been described in more detail in Section 5.2 of D6.1.

4.1.15 OPTIMAI Augmented Reality solution

Since its inception, OPTIMAI has envisioned Augmented Reality (AR) as a key enabler to achieve

the project’s ambitious goals. Throughout the first 18 months of the project, as the designs for

the different system components matured, it became evident that the AR ecosystem

contemplated (based on a custom smart-glasses hardware solution provisioned by YBQ)

constitutes a standalone component comprising a multimodal pipeline for alerting the operators

on the shop floor about detected or predicted defects of the manufacturing pipeline providing

them intuitive ways for rapid response towards resolving the problem. This component will

50

operate in tandem with the OMIDES Front-end providing alternative workflows based on the

OPTIMAI’s smart glasses ecosystem. The aforementioned endeavour is materialized by the

MAIAR (optiMAI AR) Software, which provides pervasive visualization, recommendation and

interpretation directly on top of the smart glasses hardware.

4.1.1.38 038 MAIAR Software

As a standalone module, the MAIAR software encapsulates many of the functionalities

supported in the OMIDES Front-end, albeit contextualised to support operation in an AR

environment. This means that the MAIAR software integrates its own separate design for the

visualization of defect and quality results algorithmic outputs, the adaptation of the visualisation

environment triggered by an integrated ontological decision-making component, and support

for hand gesture-based interaction to receive input from the smart glasses wearer.

The high-level functional architecture of the MAIAR Software is depicted in Figure 15. An

elaborate description of the various elements comprising the application will be delivered in

D5.3.

Figure 15. MAIAR Software component diagram.

4.2 OPTIMAI alignment to standards-led reference architectures

Void (the contents provided in Section 4.2 of D2.4 apply).

4.2.1 Alignment to RAMI 4.0

RAMI 4.0, as specified in Section 2.2.1, is a cubic map intended to encapsulate the entirety of

concepts and elements that make up the modern I4.0 smart factory environment. It delivers

no concrete architecture or implementation guidelines, but rather, presents a structured

approach to address the particulars of a given smart factory use case.

Interpreting OPTIMAI in the context of RAMI4.0, the foreseen UCs to be evaluated in the three

pilot sites (and thus, the defined architecture for the proposed solution to those UCs’

requirements) are:

<<Node>>

MAIAR Software

<<Node>>

Smart glasses

<<Component>>

Asynchronous

communication

client

<<Node>>

Middleware

<<Component>>

Context-dr iven

ontological

decision-maker

<<Component>>

Widget

visualization

controller

<<Component>>

Widget<<Component>>

Widget
<<Component>>

Visualization

Widget(s)

Environment

<<Component>>

Live video

Streamer

51

• Reducing the number of quality defects in the production line (“Zero defect quality

inspection” – UC1).

• Improving the efficiency of the production line by optimally calibrating machines/robotic

cells in a way that decreases stoppages (“Production line setup-calibration” – UC2).

• Optimising the production of the manufacturing line by means of a digital twin where

optimal product manufacturing sequence can be calculated for future planning purposes

(“Production planning” – UC3).

It becomes apparent that these processes are created inside the ‘Instance’ phase of the Life

Cycle & Value Stream axis defined in RAMI 4.0. Particularly, the processes described in the 24

sub-UCs defined in D2.6 fall within the ‘Production’ state, as the actions undertaken to deal

with quality issues during manufacturing execution, and formulating knowledge for ideally

setting up the manufacturing environment. Hence, with the placement in one of the three axes

specified, OPTIMAI can be layered on top of a 2D slice extracted from the cubic map (Figure

16) presenting a layer-and-hierarchy mapping in terms of “Production”.

Section 4.2.1, D2.4, M12.

Figure 16: OPTIMAI placement within the RAMI 4.0 cubic model. Adapted from the original Graphic © Plattform

Industrie 4.0 and ZVEI, retrieved from [4] (reproduced here from D2.4, M12).

Based on the described operations of the functional components presented in the previous Section,

the OPTIMAI architecture is mapped onto the 2D layer-and-hierarchy slice as shown in Figure 17,

thus enabling the compatibility with the RAMI 4.0 guiding principles to be better illustrated.

As can be seen, OPTIMAI defines components across all Layers and Hierarchy Levels for the

“Production” state of the ‘Instance’ Life Cycle & Value Stream Phase:

Section 4.2.1, D2.4, M12.

• The QCS Network is comprised of sensory apparatus and modules installed on the shop

floor for collection of data and actuation. All QCS Network blocks therefore can be

mapped to the ‘Asset’ RAMI 4.0 Layer. Based on the extent of intelligence that can be

52

applied to the devices (i.e., simply generating and propagating values, or actually

executing intelligent functions to produce higher-order data and actuation commands),

defined modules are mapped to both the ‘Field Device’ (001) and ‘Control Device’ (002,

003) Hierarchy Levels.

• The Middleware subsystem (components 004-007) similarly maps to the ‘Integration’ Layer as

it underpins the communication of the entities in the real world with the higher-level software

components of the architecture. Dealing heavily with the exchange of data among functional

units, sensors and subsystems, the Middleware components are aligned to the functional areas

defined within the responsibility of a MES, e.g., the ‘Work Centers’ Hierarchy Level, with the

added benefit of implementing security mechanisms as early as the data acquisition process

(i.e., as soon as data enters the system).

Section 4.2.1, D2.4, M12.

Figure 17: OPTIMAI Layer-and-Hierarchy mapping to RAMI 4.0.

• Components of the OPR4AA Platform facilitate the edge-based calculation and delivery

of control parameters in an attempt to optimize acquisition and actuation. As specified in

D2.4, edge-based computations align to the ‘Integration’ RAMI 4.0 Layer, facilitating a

direct interaction of readings from the QCS Network with edge-based AI models through

the Middleware. On the Hierarchy Levels axis, the Data flow controller (008) maps to the

‘Work Centers’ Hierarchy Level, since its core function is to manage data flow among the

B
u

si
n

e
ss

Fu
n

ct
io

n
al

In
fo

rm
at

io
n

C
o

m
m

u
n

ic
at

io
n

In
te

gr
at

io
n

A
ss

e
t

Product Field Device Control Device Station
(SCADA)

Work Centers
(MES)

Enterprise
(ERP)

Connected World

OPTIMAI Agent
(001)

OPR4AA Analytics
Engine

(009)

Middleware Cloud
Data Repository

(011; 012; 013)

Middleware
(004; 005; 006; 007)

Firmware/Software
Validation Smart

Contract
(017)

Model & Data Inte-
grity Smart Contract

(018)

Access Control
Smart Contract

(016)

OMIDES Context
Awareness & DSS
(019; 020; 021; 022)

OPTIMAI Market-
place Catalogues

(026; 027)

Manufacturing
(re-) configuration

Service (028)

DT Process Models
(031)

Virtualized Sensor
Network

(032)

AI Production
Planning Simula-

tion Engine
030

Smart Quality Control
(029; 030)

OPTIMAI
Intelligent Market-
place Dashboard

(033)

Visual
Components (034)

MAIAR Software
(038)

Hierarchy Levels

La
ye

rs

OPTIMAI
SoftSensor

(002)

EyeVision Web
Service

(003)

OPR4AA Data Flow
Controller & HDFS

(008; 010)

Blockchain API
(014)

Blockchain IPFS
(015)

Conversational agent
(023)

Marketplace BE
Service (024)

Marketplace IDM
(025)

OMIDES Front-End
(035; 036; 037)

53

other components of the subsystem. The Analytics engine (009) functions in the same

capacity as the QCS Network intelligent components at the ‘Control Device’ Hierarchy

Level. Finally, the HDFS (010) encompasses collection and storage of data, which occurs

also in the ‘Work Centers’ Hierarchy Level.

• The Middleware Cloud Data Repository (blocks 011-013) complements the aforementioned

functional area of MES regarding collection and storage of process and production data

occurring within the ‘Work Centers’ Hierarchy Level, while mapping to the ‘Information’

Layer where RAMI 4.0 considers structured data storage.

Section 4.2.1, D2.4, M12.

• With respect to the Blockchain Framework, the Blockchain API Service (014) functions in

a similar capacity to the OPR4AA Data flow controller at the intersection of the

‘Integration’ Layer and ‘Work Centers’ Hierarchy Level. the IPFS (015) is defined within the

‘Information’ Layer, for “dealing with the distributed ledger architecture (e.g., a database

spread across locations) for storing records” (D2.4). The smart contract components (016-

018) are mapped according to the D2.4 established guidelines:

[…] validation of firmware and software installed on sensors and OPTIMAI middleware (017)

relates to functional capacities of ERP systems to provide unified and centralised device

management (aligning 017 to the ‘Enterprise’ Hierarchy Level), while checks on data integrity

are a crucial component in the data acquisition processes occurring at SCADA systems [18]

(placing 018 [...] within the ‘Station’ Hierarchy Level). Finally, Access Control functionality refers

to a cybersecurity perspective of dealing with security challenges related to attack vectors to

communication methods over the network [17], particularly relevant to the data acquisition

part of modern SCADA systems. Hence, functional block 016 is mapped at the intersection of

the ‘Communication’ Layer with the ‘Station’ Hierarchy Level.

Section 4.2.1, D2.4, M12.

• The OMIDES Back-End components support SCADA workflows occurring at a UI or HMI

terminal, therefore mapping components 019-023 to the ‘Station’ RAMI 4.0 Hierarchy

Level. On the Layers axis, the DSS Engine (022) implements storage and data flow

functions (e.g., forwarding of alerts and notification to the proper user accounts), which

map the component to the ‘Information’ Layer. The Conversational Agent Back-end is

used to determine adaptive properties of UIs and HMIs, thus mapping 023 to the

‘Functional’ layer. Components 019-021 relate to processing of information for

determining higher-order information (i.e., context) on raw data, mapping them to the

‘Information’ Layer.

• The Intelligent Marketplace Back-End provides functionalities at the intersection of the

‘Integration’ Layer and ‘Work Centers’ Hierarchy Level (024) for regulating flow of data

inside the Marketplace ecosystem, as well as access control functionality (025), which, as

previously mentioned, maps at the intersection of the ‘Communication’ Layer with the

‘Station’ Hierarchy Level. The two catalogues (026-027) deal with storage (hence, mapping

54

to the ‘Information’ Layer), albeit intended to “provide a connection between the factory and

the outside world (third parties) thus mapping clearly to the ‘Connected World’ RAMI 4.0

Hierarchy Level extension” (D2.4).

• Within the AI Framework, components maintain the mappings established in D2.4:

o […] the Manufacturing (re-)configuration Service component (028) […] delivers decision-

making on the information produced by the Smart Quality Control toward applying

automated and manual re configurations of individual machine parameters. The

module is therefore found at the ‘Functional’ Level, and relates to processes

described in the ‘Control Device’ Hierarchy Level.

o […] Smart Quality Control components (029 & 030) perform the necessary processing

checks and deliver decision support toward defect identification and detection events

notification based on real-time data generated by other modules in the OPTIMAI

architecture. They are hence a crucial component to the ‘brain’ of the OPTIMAI solution,

and are defined at the intersection of ‘Functional’ Layer and ‘Station’ Hierarchy Level.

Section 4.2.1, D2.4, M12.

• Similarly, DT Framework components maintain their mappings in the ‘Integration’ Layer,

as established in D2.4, identified as either “Engineering” or “Runtime” data respectively

within the GDTA:

o DT Process Models (031) refers to the concept of “Engineering” Data, i.e., topological

information about the production plant that should be taken into account as they can

affect production parameters (such as the distance a worker has to travel from one

area to the next in a manual workstation). Hence, we can define those data as

originating in the ‘Product’ Level, referring to the production facilities and the

interdependencies they impose [5].

o The Virtualised Sensor Network (032) supplements the functionality provisioned by the

QCS Network, similarly placing it within the ‘Field Device’ Level.

Section 4.2.1, D2.4, M12.

• With respect to the End-users’ Applications, these also maintain their established

mappings from D2.4:

o The OPTIMAI Intelligent Marketplace Dashboard (033), provides a connection

between the factory and the outside world (third parties) thus mapping clearly to the

‘Connected World’ RAMI 4.0 Hierarchy Level extension. It becomes further apparent that

block 033 refers to an application designed to influence decisions at the strategic level

(such as the acquisition/reuse of scrap produced by another organisation), while the

Back-End subsystem deals with recording of transactional information and feedback.

They are thus found within the ‘Business’ and ‘Information’ Layers respectively.

o The Visual Components Software (034) represents a rich UI provisioned for the

supervisory control part of SCADA systems, which is aimed at enabling monitoring of

real-time data generated by the simulation and the direct interaction with the DT

devices and sensors through emulated HMI software. Hence, for OPTIMAI purposes, this

component is found at the ‘Station’ Level.

55

o The OMIDES Front-End on the other hand (functional blocks 035-037), combines with

the Manufacturing (re-)configuration Service component (028) to deliver decision-

making on the information produced by the Smart Quality Control, toward applying

automated and manual re configurations of individual machine parameters. These

modules are therefore found at the ‘Functional’ Level, and relate to processes described

in the ‘Control Device’ Hierarchy Level.

Section 4.2.1, D2.4, M12.

• Finally, the MAIAR Software encapsulates functionalities that closely align to those of the

OMIDES Front-end and Back-end modules. At a high-level, we will map the MAIAR

Software at the intersection of the ‘Functional’ Level, and the processes described in the

‘Control Device’ Hierarchy Level.

4.2.2 Alignment to IIRA

As has been mentioned in Section 2, IIRA and RAMI 4.0 are significantly similar in their support of

SOAs, i.e., decomposition of system functionality into an array of interconnected services. Because

of the service-oriented approach followed in the OPTIMAI architecture, as well as its overt

alignment to RAMI 4.0 described in the previous Section, by extension OPTIMAI can significantly be

parallelised to the IIRA as well. Regarding the IIRA Viewpoints, with respect to the OPTIMAI project,

the following are thoroughly defined in the context of OPTIMAI:

• The Usage Viewpoint of the OPTIMAI architecture is described in detail in deliverable D2.6,

which precedes the present document in specifying the expected usage of the OPTIMAI system.

In specifying the use cases in detail prior to the architecture (i.e., taking use case description

into account when designing the ICT systems to support each case), OPTIMAI aligns to the

principle of IIRA for top Viewpoints to guide the design of the viewpoint directly below.

• The Functional Viewpoint, which is reflected in the specification of the OPTIMAI system

functional blocks and their correspondences to roles and responsibilities (Section 4.1), related

to the functions they are expected to perform to support the use cases. As IIRA and RAMI 4.0

intersect at the IIoT systems for smart manufacturing domain, RA alignment principles are

established for the functional mapping of the IIRA and RAMI 4.0 [8], which are iterated in

Figure 18. Based on these mappings, correspondences between the OPTIMAI architecture

(from an IIoT solution perspective) and the IIRA are shown in Figure 19.

Section 4.2.2, D2.4, M12.

56

Figure 18: mapping between the IIRA Functional Viewpoint and IT layers established in RAMI 4.0. Source: [8] (retrieved

from D2.4, M12).

Figure 19: Functional mapping of the OPTIMAI Architecture to IIRA based on the alignment to RAMI 4.0.

Following the guidelines presented in Figure 19, the OPTIMAI architectural components can be

mapped to the following IIRA Functional Domains, as indicated in the following Table (Table 4):

Table 4: Mapping between IIRA Functional Domains and OPTIMAI functional components.

IIRA Functional

Domain
Description

OPTIMAI Functional

Blocks

Physical

Systems

Despite not being formally established as a

Functional Domain in IIRA, Physical systems are

directly mapped onto the RAMI 4.0 Assets Layer, and

are understood as the physical resources on the

001, 002, 003

Functional Domains

Physical Systems

Business

O
p

er
at

io
n

s

Sense Actuation

033

034

A
p

p
lic

at
io

n

In
fo

rm
at

io
n 035

Control

036

011 012

013 015

017 018

019 020

021 022

026 027

016

…

031

032

009

004

005
006 007

002 001 003

C
o

n
n

ectivity

D
istrib

u
ted

 D
ata M

an
agem

en
t

In
d

u
strial A

n
alysis

In
telligen

t &
 R

esilien
t C

o
n

tro
l028 023

029 030

008

010

014

024

025

037

038

57

factory shop floor. Because of dealing with sensing

and actuation, these assets can also be mapped to

the Control domain, as elaborated below.

Control

domain

Includes components, whose functions deal mainly

with the control, sensing and actuation on the

physical systems. Such functions involve the

collection of data from sensors, potential application

of logic and eventual execution of actuation

commands. Because of this property, within the IIRA,

these assets are considered to be in close “proximity

to the physical systems they control” [7] (i.e., the

Network Edge). Identifies the following functions:

• Sensing: Read data from sensors.

• Actuation: Apply configuration to a hardware

component.

• Communication: Connect to external entities.

• Entity abstraction: Sensor digital

representation (digital twin).

• Modelling: Monitoring of operation.

• Asset management: Exercises management

over the hardware.

• Executor: Exercises logic to facilitate control (at

the edge-level).

Sensing

001; 002; 003; 005;

008

Actuation

001; 003

Communication

004; 007; 008; 014;

024

Entity Abstraction

031, 032

Modelling

006; 009; 010

Asset Management

003; 009; 010

Executor

003; 009; 010

Operations

domain

Exercises monitoring, management and control over

the assets in the Control domain. Essentially, this

domain deals with operations regarding decision-

making based on data capturing, processing and

validation. Hence, it is directly mapped to the

functions defined within the RAMI 4.0 Functional

Layer. Identifies the following functions:

• Provisioning and Deployment: Configure and

deploy/retire assets from the network

• Asset Management: Intelligently manage

assets’ processes.

• Monitoring & Diagnostics: Detection and

prediction of issues.

• Prognostics: Predictive analytics.

• Optimisation: Improve asset performance.

Provisioning &

Deployment

028

Asset Management

023; 028

Monitoring &

Diagnostics

029; 030

Prognostics

030

Optimisation

028

58

Information

domain

Deals with the management, processing,

transformation and storage of data. Maps directly to

the RAMI 4.0 Information Layer. Identifies the

following functions:

• Analytics: Data modelling and rules’

application.

• Data: Pre-processing and persistence of data.

Analytics

017; 018; 019; 020;

021; 022

Data

011; 012; 013; 015;

026; 027

Application

domain

Deals with functions that support application-

specific logic. Within the IIRA it differentiates from

the Operations domain by being use-case-specific,

yet, its functions (listed below) maintain mapping to

the RAMI 4.0 Functional Layer.

• Logic and Rules: implements specific rules and

models tied to a specific use case.

• APIs and UI: Refers to the interfaces exposed

towards other functional entities, including

human operators.

Logic & Rules

034; 035; 038

APIs & UI

036, 037, 038

Business

domain

Deals with functions that implement business

processes. Maps directly onto the RAMI 4.0 Business

Layer.

033

Not depicted in the above Table, the RAMI 4.0 Communication Layer (in which OPTIMAI

components 016 and 025 are defined) is mapped onto the Connectivity Crosscutting Function

defined in IIRA, reflecting the need for a particular security function to be implemented across

communications of the functional components [7] (in OPTIMAI’s case, Role-Based Access

Control).

Finally, some elements related to the Implementation viewpoint can be seen in the descriptions

of both the technologies’ selected technical components (e.g., sensor hardware) and

communication schemes (e.g., OPC-UA), while the strategic goals and benefits driving the

system implementation and deployment across the three industrial pilot sites (i.e., the IIRA

Business Viewpoint) are reflected in the Key Performance Indicators (KPIs) elaborated for each

case in D2.6.

Section 4.2.2, D2.4, M12.

4.2.3 Key takeaways

Void (the contents provided in Section 4.2.3 of D2.4 apply).

59

5 OPTIMAI Architecture - Information view

Void (the contents provided in Section 5 of D2.4 apply).

5.1 Overview information flow

In particular, the purpose of the OPTIMAI information view is to specify details with regard to the

communication channels and data flows between different components, taking into account the

input, output, and dependencies documented for each one.

Figure 20 presents an overview of the OPTIMAI Information Flow Diagram (IFD) layered on top

of the functional architectural viewpoint, hence depicting the manner in which information flows

through the system between locations, ether within the same, or between federated computer

systems. The goal is to define the manner in which information is exchanged between OPTIMAI

functional blocks, as well as with potential external entities (e.g., user equipment). All foreseen

data exchanges are represented following the producer-consumer paradigm [20], in which any

one of the interdependent functional blocks can assume the role of a producer (of data), a

consumer, or both.

Section 5.1, D2.4, M12.

Following this paradigm, concrete interfaces between the functional components have been

identified, and they reveal the data that a “producer” block generates and sends to its

interdependent “consumer”. The following paragraphs provide a thorough description of the

interfaces (presenting the message exchange formats, request and response schemas, etc.).

Therefore, the content of the current section offers a comprehensive reference frame for the

final system implementation.

A template created for the purpose of interface definition was completed by all

developers/component owners to capture message exchange information for each interface

identified among theirs and other components in the architecture (Figure 20). This template is

presented in pages 7-15 of the Component refinement template included in Appendix A. The

input provided by partners contributed to the identification of the specific inter-exchanges listed

in Figure 20. For the various parameters defined in these exchanges, the information mentioned

in Table 5 will be specified.

Communication of the various functional modules and components was hence defined in

accordance to the information collected through the component refinement template (Appendix

A). These interfaces allow both synchronous and asynchronous communications between the

architectural components.

Synchronous communication in the framework of the defined interfaces refers to a mode of

communication that is based on a request-response API mechanism. For example, a module

constructs a request (HTTP) structure, sends the request and the interdependent entity

60

processes the request and sends back a response. All the synchronous interfaces in the OPTIMAI

Information view are implemented using REST clients.

61

Figure 20: OPTIMAI high-level Information Flow Diagram.

OPTIMAI AgentOPTIMAI Agent

Quality Control Sensors (QCS) Network (UC-Specific)

Cybersecurity
Defense Module

Edge Computing Modules

Middleware

IoT Agent

FINoT Platform

Middleware Service

OPTIMAI OPR4AA

Cloud Computing Modules

Private Cloud Data Repository

Blockchain AI Framework

Defect Detection
& Quality Control

OMIDES Back-End

End-Users’ Applications

O
P

TI
M

A
I A

u
gm

en
te

d
 R

ea
lit

y
So

lu
ti

o
n

User Equipment

Desktop PC /
Laptop

Marketplace Front-end

Back-end Service

Smart surface …

M
A

IA
R

 S
en

si
ng

 &

st
re

am
in

g
Sm

ar
t

G
la

ss
es

P
er

va
si

ve
 v

is
u

a
liz

a
ti

o
n

,
re

co
m

m
e

n
d

a
ti

o
n

 a
n

d
 in

te
rp

re
ta

ti
o

n
 (

M
A

IA
R

 S
o

ft
w

a
re

)

Hadoop Distributed File System

Historical Data File StorageOpen datasets

Decision Support
System Engine

Context-awareness

OMIDES Front-End

Conversational
interfaces

Early Notification

Legacy sensors OPTIMAI (Smart) sensors

Sensor 1 … Sensor N

OPTIMAI Agent

…Sensor 2

Actuators
(UC-Specific)Actuator 1 Actuator 2 …

Analytics Engine

Data Flow Controller

Marketplace Back-End

OPTIMAI IDM

AI Algorithm
Catalogue

Blockchain
API Service

OPTIMAI Private BC EVM
Access Control

Smart Contract (SC)

Firmware/Soft-
ware Validation SC

Model and
Data Integrity SC

AIPMC

Conversational agent

Manufacturing (re-)
configuration service

DT Process models

Simulation Front-end

DT Framework

Virtualized Sensors

Visual
Components

4.4

OPTIMAI
Marketplace
Dashboard

EyeVision
Web

Service

CERTH
Sensor 1

UNI
Sensor 2

EVT
Sensor N

Input AI

Actuator 3

CERTH SoftSensor

Input Analytics

UNIMET SoftSensor

IPFS

Scrap Reuse
Catalogue

Smart Quality Control

Visual Analytics

62

Table 5: Interface information elements description and conventions used.

Information

element

Description and notations

Parameter Parameter name.

Requisitness Indicates requisiteness of the parameter, e.g., whether the parameter is: (M)

mandatory; (O) optional; (CM) conditional mandatory; (CO) conditional optional.

Cardinality

Indicates cardinality, e.g., number of allowed appearances of this parameter in

the message payload. It may indicate a range of cardinality, as well as imply

requisitness (e.g., optional parameters may have a cardinality of 0).

Type The type of data communicated by this parameter (e.g., string, integer, etc.)

Description A short description of the parameter.

In the asynchronous communication mode, components communicate through a

publish/subscribe paradigm relying on a message broker component. In the asynchronous case,

a component constructs a request (HTTP) structure, sends the request, but doesn’t wait for a

response, as opposed to synchronous communication. Within OPTIMAI, this mode of

communication is realised by utilising the OASIS MQTT protocol, which is implemented using the

project’s Middleware solution3. Basically, a client sends messages to a server (broker) over the

middleware. These messages are published to a specific address (an exchange or queue) where

they can be consumed by clients. Queues retain a copy of each message internally until the client

receives and processes this message. A unique queue can be assigned to each client, allowing

clients to consume individual copies of messages at their own pace, without affecting the

functionality of other clients. The Middleware is therefore be used to manage distribution to the

queues so that publishers can add messages to the queues and subscribers can consume them.

The communication interfaces for each component are, or will be described in detail in the

component’s respective deliverable.

5.2 Use Case-specific information flow

This section presents selected indicative application scenarios of the OPTIMAI system in

the form of sequence diagrams, aimed at clarifying how information flows through the

system so as to enable specific functionality pertinent to the three use case types defined for

each industrial pilot site in the project. These sequence diagrams are meant to elaborate on

the high level overview of the flow of information presented in the previous paragraph, and

provide a simple, yet detailed overview of the overall synergies and interdependent component

3 Alternatively, RabbitMQ can be used, because it is a mature message broker providing support for a

straightforward client and server implementation of the MQTT protocol, enabling the distribution of

messages through a publish/subscribe messaging pattern and the creation of work queues.

63

flows created for individual process delivering on specific use-case functionalities. Each diagram

is carefully designed to demonstrate the roles and responsibilities of the different components

in the OPTIMAI architecture with respect to the use case in question. We omit to include a

description of the UCs themselves, as this information is available in deliverable D2.6.

Section 5.2, D2.4, M12.

In specific, 8 application scenarios of the system have been elected, since they represent key

functionality offered by the system in the different pilot application UCs. The choice of scenarios

to be elaborated as sequence diagrams has been made so as to incorporate, and hence,

demonstrate indicative functionalities and information flow involving all of the main

components and modules of the OPTIMAI architectural stack.

The sequence diagrams have been designed taking into account the industrial partners’

requirements, information contributed by the technical partners using the component

refinement template (Appendix A), information retrieved from the technical deliverables in WPs

3-6, and finally, discussion with all partners during the final architecture workshop, where the

information was presented as use case-specific Information Flow Diagrams (IFDs, see Figure 20

for the overall IFD) and was agreed upon by all Consortium partners.

5.2.1 Multi-sensory data acquisition

The diagram presented in Figure 21 showcases the different ways in which measurements are

entered into the system and are forwarded to the Middleware for externalization to the other

subsystems and components of the OPTIMAI platform. Three distinct cases of data acquisition

are represented, i.e., data coming from existing (legacy) sensors via the OPTIMAI Agent; higher-

order measurement generation from OPTIMAI-developed SoftSensors; and direct propagation

of measurements from “smart” sensors with a direct connection to the Middleware (i.e., EVT

sensors). The optional scenario of the EyeVision Web Service being used in the capacity of a

SoftSensor is also displayed. The Middleware applies cyber security at the data acquisition level,

executes CEP and storage and eventually distributes the data over the appropriate interface.

The application scenario is relevant in both UC1 and UC2, as defined in D2.6.

64

Figure 21: OPTIMAI multi-sensory data acquisition sequence diagram.

5.2.2 Time-critical configurations: bypassing the Middleware

The diagram presented in Figure 22 demonstrates a particular scenario presented in Section 5.4

of D3.1. In this case, granted that for time critical, minor adjustments that can be handled by

extremely lightweight algorithms, passing the data through the Middleware might be an overkill

solution, the architecture can support execution directly on the shop floor. This is enabled

through the EyeVision Web Service exposing a C++ plugin interface, enabling execution of

algorithms on the shop floor device on which it is running. Depending on the actuator hardware

and software configuration, actuation commands can be applied directly through the EyeVision

software, or by means of the OPTIMAI Agent.

<<Component>>

OPTIMAI Agent

<<Node>>

Legacy Sensors

<<Node>>

Smart Sensor

<<Node>>

EVT Sensor

<<Node>>

SoftSensor

<<Node>>

EyeVision

<<Node>>

Middleware

1.1: Poll for measurements

1.2: Return measurements

1.3: Propagate measurements

1.4: Cyber-security

applicat ion

1.5: Storage and

CEP

1.6: Scheduling for

externalalizat ion

2.1: Measurement generat ion

2.2: Generat ion of

novel measurement

2.3: Propagate “smart ” measurement

2.4: Cyber-security

applicat ion

2.5: Storage and

CEP

2.6: Scheduling for

externalalizat ion

4.1: Measurement generat ion

4.2: Generat ion of

novel measurement

4.3: Propagate “smart ”

measurement

4.4: Cyber-security

applicat ion

4.5: Storage and

CEP

4.6: Scheduling for

externalalizat ion

3.1: Measurement generat ion

3.4: Cyber-security

applicat ion

3.5: Storage and

CEP

3.6: Scheduling for

externalalizat ion

opt [using EyeVision for smart measurement generat ion]

65

Figure 22: OPTIMAI time-critical configuration and bypassing the Middleware sequence diagram.

This application scenario is relevant to UC2.

5.2.3 Defect detection and production line monitoring

The diagram in Figure 23 presents the use of the system in the capacity described in Section 4

of D6.1, demonstrating the use of the AI Framework to detect events through the Defect

Detection and Quality Control Service and the AIPMC (executed in parallel). The results are then

visualized to a production operator using the OMIDES on a desktop or tablet terminal device.

The case in which data needs to be analysed for context (e.g., whenever data from the wearable

camera sensor on the OPTIMAI Smart Glasses is processed), the triggering of the OMIDES Back

end modules is laid out. The user can interact with the OMIDES Front-end components and

receive information in a comprehensive manner through the various visualization widgets. The

application scenario is related to all UCs.

<<Component>>

OPTIMAI Agent

<<Node>>

Actuator

<<Node>>

EyeVision

alt

<<Node>>

Smart/EVT

Sensor

1: Measurement generat ion

2: AI Algorithm

execut ion

3: Re-configurat ion

parameters extract ion

[EyeVision direct ly applies actuat ion parameters to actuator]

4: Send actuat ion commands

5: Actuat ion

[OPTIMAI Agent is used to apply actuat ion]

4: Send actuat ion commands

6: Actuat ion

5: Apply actuat ion

commands

66

Figure 23: Defect detection and production line monitoring sequence diagram.

<<Component>>

Defect Detection

& Quality Control

<<Node>>

Middleware

<<Component>>

AIPMC

<<Node>>

OMIDES Back-End:

Context-Awareness

<<Component>>

Decision Support

System

1.1: Propagate

measurements

1.2: Defect Detect ion

algorithm execut ion:

detect exist ing defects

1.3: Defect Analysis

algorithm execut ion:

detect upcoming defects
1.4: Return quality results

1.5: Forward quality results & raw data for context -awareness

1.6: Context -awareness

algorithms execut ion:

Instance segmentat ion,

pose est imat ion.

1.7: Forward results.

alt [Use of OPTIMAI smart glasses: Data from wearable sensor]

[Use of shop-floor laptop or tablet : Data from shop floor installed

sensor]

<<Node>>

OMIDES Front-end

1.5: Forward quality results

par [Defect detect ion and predict ion]

[Subopt imal product ion condit ions detect ion]

1.1: Propagate

measurements

1.2: Anomaly Detect ion

algorithm execut ion:

detect anomalies in

product ion

1.3: Root-cause Analysis

algorithm execut ion:

detect subopt imal

product ion condit ions1.4: Return quality results

1.5: Forward quality results & raw data for context -awareness

1.6: Context-awareness

algorithms execut ion:

Instance segmentat ion,

pose est imat ion.

1.7: Forward results.

alt [Use of OPTIMAI smart glasses: Data from wearable sensor]

[Use of shop-floor laptop or tablet : Data from shop floor installed sensor]

1.5: Forward quality results

1.8: Forward to user at

signed-in device.

1.9: User interact ion with input components.

1.10: Update

visualizat ion widget

components.

User

<<Node>>

MAIAR Software

alt

[Use of OPTIMAI smart glasses]

[Use of shop-floor laptop or tablet]

1.8: User interact ion with input components.

1.9 Update

visualizat ion

widget

components.

67

5.2.4 On-the-edge processing

The diagram in Figure 24 pertains to the capability of the system to utilise on-the-edge algorithm

execution through the OPR4AA Platform. The diagram demonstrates how data is entered to the

OPR4AA Platform by means of the Data Flow Controller, along with the interworking of the

Analytics Engine (Apache Spark) and HDFS (Hadoop) pipelines. In this way, measurements data

can be entered into the OPR4AA Platform and quality results can be obtained bypassing the AI

Framework (in cases where the algorithmic execution is lightweight enough to allow task

execution on the edge). Optionally, algorithms for the re-configuration of software on the

actuators can run in the same manner, with automatic deployment of actuation commands

being possible by means of the OPTIMAI Agent.

The application scenario is relevant in both UC1 and UC2.

Figure 24: On-the-edge processing sequence diagram.

5.2.5 Manual and automatic re-configuration

The application scenario elaborated in the diagram shown in Figure 25 demonstrates how the

Manufacturing (re-)configuration Service agents are triggered by the events registered at the

Smart Quality Control algorithmic components (executing in parallel). After execution of the

agent, re-configuration parameters can be translated to actuator commands that can be

executed either automatically (through the OPTIMAI Agent), or manually, by presenting the

option to apply re-configuration to the proper user at the proper terminal station. The user can

opt to accept the re-configuration suggestion, in which case the Middleware triggers the OPTIMAI

Agent after receiving clearance from the OMIDES Front-end/Back-end components. The

application scenario is related to UC2, and, for the manual case, can be realized in UC3 as well.

An alternative diagram shown in demonstrates the alternative of suing the MAIAR software

(through the wearable OPTIMAI smart glasses) to provide the operator with on-site decision

support.

<<Component>>

OPR4AA

Analytics Engine

opt

1: Propagate measurements

[Automat ic actuat ion based on lightweight AI edge computat ions]

10: Send actuat ion commands

12: Actuat ion

11: Apply actuat ion

commands

<<Node>>

Middleware

<<Component>>

OPR4AA Data

Flow Controller

<<Component>>

OPR4AA

HDFS

2: Forward to Apache

Spark cluster

5: Run Spark job

on HDFS data (write)

3: Request data from HDFS

4: Read data from HDFS

6: Write data to HDFS

7: Acknowledge write

8: Return AI results

9: Propagate AI results

<<Node>>

Actuator

<<Component>>

OPTMAI Agent

68

Figure 25: Manual and automatic reconfiguration sequence diagram (using OMIDES Front-end).

<<Component>>

Defect Detection

& Quality Control

<<Node>>

Middleware

<<Component>>

AIPMC

<<Component>>

Manufactur ing (Re-)

Configuration Service

<<Component>>

Decision Support

System

1.1: Publish detected defect informat ion

1.3: calculate and

produces a set of

control act ions to

execute.

1.2: Trigger AI agents of the

(re)-configurat ion service

alt [Manual reconfigurat ion]

[Automat ic reconfigurat ion]

<<Node>>

OMIDES Front-end

5.4: User interact ion with input components (accept re-configurat ion).

par [Defect detect ion and predict ion]

User

1.4: Return (re-)

configurat ion data

5.1: Forward Return (re-) configurat ion data

<<Node>>

Actuator

5.4: Forward user command

5.3: Update

visualizat ion widget

components.

[Subopt imal product ion condit ions detect ion]

2.1: Publish detected defect informat ion

2.3: calculate and

produces a set of

control act ions to

execute.

2.2: Trigger AI agents of the

(re)-configurat ion service

2.4: Return (re-)

configurat ion data

<<Component>>

OPTMAI Agent

5.1: Send actuat ion commands

5.2: Apply actuat ion

commands

5.3: Actuat ion

5.6: Send actuat ion commands 5.7: Apply actuat ion

commands

5.8: Actuat ion

5.2: Forward to user at

signed-in device.

5.5: Confirm actuat ion applicat ion

69

Figure 26: Manual and automatic reconfiguration sequence diagram (using MAIAR Software).

<<Component>>

Defect Detection

& Quality Control

<<Node>>

Middleware

<<Component>>

AIPMC

<<Component>>

Manufactur ing (Re-)

Configuration Service

<<Node>>

MAIAR Software

1.1: Publish detected defect informat ion

1.3: calculate and

produces a set of

control act ions to

execute.

1.2: Trigger AI agents of the

(re)-configurat ion service

alt [Manual reconfigurat ion]

[Automat ic reconfigurat ion]

<<Node>>

OMIDES Back-End:

Context-Awareness

5.3: User interact ion with gesture (accept re-configurat ion).

par [Defect detect ion and predict ion]

User

1.4: Return (re-)

configurat ion data

5.1: Forward (re-) configurat ion data

<<Node>>

Actuator

5.6: Context -awareness

algorithms execut ion:

Act ivity recognit ion.

[Subopt imal product ion condit ions detect ion]

2.1: Publish detected defect informat ion

2.3: calculate and

produces a set of

control act ions to

execute.

2.2: Trigger AI agents of the

(re)-configurat ion service

2.4: Return (re-)

configurat ion data

<<Component>>

OPTMAI Agent

5.1: Send actuat ion commands

5.2: Apply actuat ion

commands

5.3: Actuat ion

5.11: Send actuat ion commands

5.12: Apply actuat ion

commands

5.13:

Actuat ion

5.10: (Assuming match): Confirm actuat ion applicat ion

5.2: Update

visualizat ion widget

components.

5.4: Publish raw image data

5.5: Dequeue raw image data

5.7: Publish act ivity data

5.8: Dequeue act ivity data

5.9: Check act ivity

against act ivity

vocabulary.

70

5.2.6 Software configuration transaction on the blockchain

The application scenario shown in the sequence diagram in Figure 27 elaborates on the means

in which the Blockchain Framework components are triggered whenever a software

configuration is to be applied on a sensor or actuator on the shop floor. This can for instance be

executed whenever an operator elects to apply a new configuration based on the outputs of the

AI Framework components. The data related to the configuration to be applied is forwarded by

the Middleware to the Blockchain API Service. The latter forwards the data through the Web3.js

endpoint to the Firmware/Software Validation smart contract, which in turn requests a new hash

value for the transaction by the IPFS. After the has is obtained, the contract is executed on the

EVM and the hash is stored on a new block.

A similar transaction is triggered in the firmware update case. The application scenario is related

to UC2, and, for can be realized in UC3 (when a simulated condition reveals an optimal

production environment, which the operator elects to apply in the long-term) as well.

Figure 27: Software configuration transaction on the blockchain sequence diagram.

5.2.7 Production line simulation

In this scenario depicted in Figure 28, processes that are exclusively related to UC3 are

elaborated. An operator decides to simulate a particular plant configuration using the simulation

front-end client (Visual Components Software – VC4.4). The operator elects the process model

and the Virtualized Sensor Network dataset (e.g., from a particular day) to load up. The

information is obtained from the Historical Data silo in the Cloud Data Repository maintained by

the Middleware. The Virtualized Sensor Network on boards the data and simulation can start at

the behest of the user. The sensors data is generated as if measurements were collected from

actual hardware, entering the Middleware in typical fashion. The Middleware handles

cybersecurity at data acquisition and proceeds to forward the data to the architectural

components by means of the endpoints API.

The system now enables different functions (as described in previous application scenarios),

such as the display of higher level takeaways displayed in an OMIDES Front-end running

terminal.

<<Component>>

Firmware/Softwa

re Validation SC

1: Propagate software

configurat ion data

<<Node>>

Middleware

<<Component>>

Blockchain API

Service

<<Component>>

IPFS

2: Data communicat ion

via Web3.js endpoint

5: Execute

smart contract

3: Request hash

value for t ransact ion

4: Obtain hash value

6: Store hash value

7: Acknowledge

<<Node>>

Blockchain

71

Figure 28: Production line simulation sequence diagram.

5.2.8 Intelligent Marketplace

This application scenario is demonstrated in Figure 29. As can be seen, whenever the Smart

Quality Control components triggers a new defect event, the defective part information is

automatically entered into the Intelligent Marketplace Back-End through the Back-end Service,

and a new Scrap Reuse Offering is created.

A Product Line Operator (PLO) then logs into the Marketplace by invoking the proper log-in

routines and being authenticated through the Marketplace IDM. The Dashboard reloads to the

PLO dashboard View. The PLO can then see the automatic listing created, and further work on

the scrap offering through functions supported by the Dashboard. Eventually, the Scrap Reuse

Offering is published to third parties.

A Scrap Trader then logs into the Marketplace by similarly invoking the proper log-in routines

and being authenticated through the Marketplace IDM. The Dashboard hence reloads to the

Scrap Trader Dashboard View. The Scrap Trader can see the listing created for the Scrap Reuse

Offering and elect to purchase the item.

The application scenario refers to zero-waste production, hence relates to UC1.

<<Node>>

Visual Components

4.4

<<Node>>

Middleware

1: Init ialize new

simulat ion

3: Query process model

11: Measurement generat ion

3.4: Cyber-security

applicat ion

3.5: Storage and

CEP

3.6: Scheduling for

externalalizat ion

<<Node>>

DT Process Models

<<Node>>

Virtualized Sensors

Network

<<Component>>

Histor ical Data
User

2: Select process

model

4: Retrieve and load

process model

9: Start Simulat ion

6: Init ialize sensors network instances

7: Query sensor data

8: Retrieve and load

sensor data

5: Select virtual

sensor dataset

10: Start simulat ing measurements

72

Figure 29: Intelligent marketplace sequence diagram

<<Component>>

Defect Detection

& Quality Control

<<Node>>

Middleware

<<Component>>

AIPMC

<<Component>>

Marketplace

Back-end Service

1.1: Publish detected defect informat ion
1.2: Forward defect ive part

informat ion

par [Defect detect ion and predict ion]

Scrap Trader

[Subopt imal product ion condit ions detect ion]

2.1: Publish detected defect informat ion
2.2: Forward defect ive part

informat ion

<<Node>>

Intelligent

Marketplace

Dashboard

<<Component>>

Scrap Reuse

Catalogue

<<Component>>

OPTIMAI IDM

PLO

1.3: Create Scrap

Reuse Offering

2.3: Create Scrap

Reuse Offering

3: Enter log-in credent ials

4: Authent icate user

5: Authent icat ion token

6: Load PLO View

(show Scrap Reuse

Offering not ificat ion)

7: Create Scrap offering and publish to Marketplace for internal teams / third part ies

8: Enter log-in credent ials

9: Authent icate user

10: Authent icat ion token

11: Load Scrap

Trader View (Browse

Reuse Offerings)

12: Make purchase

 73

6 OPTIMAI Architecture - Deployment view

Typically, in software system architectures following the IEEE 1471 “Recommended Practice for

Architectural Description for Software-Intensive Systems” [21], the ‘Deployment’ view specifies the

physical deployment of the described system’s components across physical and virtualised

computing resources, together with their hardware and software requirements. Using this

viewpoint, the system developers and integrators are in a better position to determine: (i) the

number and specifications of the hardware necessary for the execution of particular system

components; (ii) the location where these entities will be deployed; and (iii) means to map software

blocks to hardware components. The means by which this information is conveyed is through a

deployment diagram.

Section 6, D2.4, M12.

The deployment diagram for the OPTIMAI architectural stack is presented in Figure 30. A variety

of devices will be utilized in the deployment, particularly with respect to the QCS Network, where

different deployment considerations are available (hardware sensors, sensors connected to

industrial PCs, sensors connected to computational modules for edge computing, etc.).

In addition, in this Section we present an updated topological view following the framework of

the Industry 4.0 smart factory and its tangible layers, as specified in [22]. These are:

• Physical resources. Constitutes the various kinds of “smart” physical resources, e.g.,

machinery, products and sensors/actuators, that make up the IoT network.

• Industrial network. Refers to the wireless network deployed for the support of both the

intercommunication of physical resources as well as the connection of those resources to

the Cloud.

• Cloud. Delivers Infrastructure-, Platform- and Software-as-a-Service (IaaS, PaaS, SaaS)

solutions by virtualising both computing and storage capabilities that can scale in and out

on demand. Within the context of OPTIMAI, this layer encompasses either private (i.e., on-

premise/internal) or public (i.e., over the Internet) Cloud services, depending on strategic

(e.g., the business already investing in on-premise data centres), or security concerns.

• Supervisory control terminals. Includes all end-user terminals (e.g., PCs, laptops, smart

surfaces, head-mounted displays, etc.) that can access processing results and storage data

housed within the Cloud, and display it to an end-user via UI/HMI solutions.

For the purposes of OPTIMAI deployment, we proceed to extend this framework by introducing

an Edge layer between the Physical resources and the Industrial network layers, reflecting the

more recently introduced capacities afforded by the edge computing paradigm.

Section 6, D2.4, M12.

74

Figure 30: OPTIMAI Deployment diagram.

We present this updated topological diagram in Figure 31.

The depicted view organises components in the different smart factory framework layers, and

their relation to the operational mechanism dual loop closed system [23]. The first loop

considers elements that are involved in the coordination and feedback provided at the Cloud-

level toward reconfiguring assets found in the Physical Resources Layer (“Coordinator”), while

the second regards data visualisation and manipulation loop manifested between the Cloud

<<device>>
Actuator 1

<<device>>
Actuator 2

… <<device>>
Actuator N

<<device>>
Edge Device

x86

<<Execution Env>>

Docker

<<Artifact>>
AI Algorithm

<<Artifact>>
AI Algorithm

<<Artifact>>
AI Algorithm

<<Component>>
Data Flow
Controller

<<Subsystem>>
Analytics Engine

<<Subsystem>>
HDFS

<<device>>
Private Server/Cloud

<<Execution Env>>

Docker

<<Component>>
Cybersecurity

Defense Module

<<Component>>
IoT Agent

<<Subsystem>>
FINoT Platform

<<Subsystem>>
Middleware Service

<<device>>
PC/Laptop

<<Execution Env>>

Docker

<<Component>>
EyeVision Web

Service
<<Artifact>>
AI Algorithm

<<Artifact>>
AI Algorithm

<<Artifact>>
Pre-defined program

<<device>>
PC/Laptop

<<device>>
UNIMET Sensor

<<device>>
CERTH Sensor

<<device>>
EVT Sensor

<<device>>
Industrial PC

<<Component>>
Input

<<Subsystem>>
Data Analytics
(M5 Software)

E.g., groov epic programmable controller

<<Execution Env>>

Manufacturing Data API

<<Subsystem>>
Historical Data

<<Subsystem>>
File Storage

<<Subsystem>>
Open Datasets

<<device>>
Actuator 4

<<device>>
Actuator 3

<<Component>>
Marketplace

Back-end Service

<<Component>>
OPTIMAI IDM

<<Subsystem>>
AI Algorithms

Catalogue

<<Subsystem>>
Scrap Reuse
Catalogue

<<device>>
PC/Laptop

<<Execution Env>>

Web Browser

<<Component>>
Marketplace
Dashboard

<<Execution Env>>

Ethereum Virtual Machine

<<Component>>
Blockchain API

Service

<<Component>>
IPFS

<<Component>>
Access Control SC

<<Component>>
Firmware/Software

Validation SC

<<Component>>
Model & Data Integrity SC

<<device>>
PC/Laptop/Tablet

<<Execution Env>>

Web Browser

<<Subsystem>>
OMIDES Front-end

<<device>>
PC/Laptop

<<Execution Env>>

Windows

<<Subsystem>>
Visual Components 4.4

<<device>>
Smart Glasses

<<Execution Env>>

Unity

<<Subsystem>>
MAIAR Software

<<Artifact>>
AI Algorithm

<<Artifact>>
AI Algorithm

<<Artifact>>
Ontology

<<Subsystem>>
OMIDES Back-end

<<Subsystem>>
DT Process Models

<<Subsystem>>
Virtualized Sensors

Network

<<Component>>
Defect Detection
& Smart Quality

Control

<<Component>>
AIPMC

<<Component>>
Manufacturing (re-)

configuration Service

<<device>>
Edge Device

<<Component>>
OPTIMAI Agent

<<device>>
NVIDIA Jetson Module

<<Component>>
Input

<<Component>>
SoftSensor AI

E.g., groov epic programmable controller

75

components engaged in statistical analysis (“Statistician”), and the supervisory terminal

applications. Big data storage provisioned on the Cloud plays a central role in each loop,

facilitating both sensing and actuation, as well as control manipulation processes in the smart

factory framework.

Section 6, D2.4, M12.

Figure 31: Topological view of OPTIMAI architecture through the smart factory framework perspective.

CERTH Sensor(s) UNIMET Sensor(s) EVT Sensor(s)

Physical
Resources

Edge

Industrial
Network

Cloud

Supervisory
control

Terminals

OPTIMAI Agent

Middleware

Middleware
Cloud Data
Repository

Blockchain
Framework

Big data

Statistician

Coordinator

OMIDES
Back-End

Marketplace
Back-End

DT
Framework

Smart Quality
Control

Manufacturing
(re-)configura-

tion Service

MAIAR Software Marketplace Dashboard Visual Components 4.4OMIDES Front-end

Manufacturing Data

CERTH SoftSensor UNIMET SoftSensor EyeVision Software

OPR4AA Platform

Actuators

Existing
sensors
storage

76

7 Conclusions

In this deliverable, the comprehensive overview of the final version of the OPTIMAI architecture

has been presented, complete with the detailed specification of all of its functional elements,

subsystems and main interaction rules and principles. The present document complements, and

wherever noted, supersedes the contents of D2.4, and culminates the activities in Task 2.3:

System specifications and architecture.

In this report we have elaborated on the architectural refinement process, which consisted of a

revised cycle of technology exploration; top-down design and bottom-up refinement, following

the provisions laid out in D2.4. In the first step, technology exploration, the progress made so

far in the different tasks of the project was closely monitored, eliciting wherever necessary new

components so as to accommodate the writings in the various project deliverables. On the top-

down phase, the existing architecture was further refined and re-aligned, ultimately producing

38 (as opposed to the original 36) components and modules, organized into subsystems,

topological categories and technological enablers addressed. During the final bottom-up

process, partners were involved (using template information delivery) to further elaborate on

the architectural subsystems where their components contribute, and the final architectural

stack was finalized over two architectural workshops.

The REPORT further specifies foreseen information flows for indicative scenarios in each of the

three use case types defined for the OPTIMAI project. These flows are defined by means of

sequence diagrams, aiming at clearly demonstrating “how the provisioned services will

communicate information within the confines of the use case” (D2.4).

Finally, the foreseen system deployment has been fully elaborated to enable the considerations

of specific provisions for the execution of the use cases. A complete deployment diagram is

presented, alongside the final mapping of the architectural stack to the smart factory framework

architectural layers [22].

An important aspect throughout this process has been to maintain and update the alignment of

the architecture to RAMI 4.0, which demonstrates pragmatically how OPTIMAI upholds specific

principles and guidelines regarding smart factory implementation, along with underlining useful

integration aspects for Work Packages 6 and 7. This is an important outcome of Task 2.3, further

highlighted by the recently accepted publication regarding the OPTIMAI architectural mapping

to RAMI 4.0 (and the IIRA), accepted for presentation at the 27th IEEE Annual Conference on

Emerging Technologies and Factory Automation (ETFA) [24].

77

References

[1] DIN, DKE. (2020). German Standardization Roadmap Industrie 4.0 Version 4.0. DIN and DKE

Roadmap. URL: https://www.din.de/en/innovation-and-research/industry-4-0/german-stand

ardization-roadmap-on-industry-4-0-77392

[2] Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D

challenges. Procedia CIRP, 17, 9-13.

[3] Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Capilla, R., Kuhn, T., & Liggesmeyer, P. (2021).

Industry 4.0 reference architectures: State of the art and future trends. Computers & Industrial

Engineering, 156, 107241.

[4] Plattform Industrie 4.0 (2018). Reference Architectural Model Industrie 4.0 (RAMI4.0) - An

Introduction. URL: https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/ra

mi40-an-introduction.html

[5] Pisching, M. A., Pessoa, M. A., Junqueira, F., dos Santos Filho, D. J., & Miyagi, P. E. (2018). An

architecture based on RAMI 4.0 to discover equipment to process operations required by

products. Computers & Industrial Engineering, 125, 574-591.

[6] Baptista, L. F., & Barata, J. (2021). Piloting Industry 4.0 in SMEs with RAMI 4.0: an enterprise

architecture approach. Procedia Computer Science, 192, 2826-2835.

[7] Industrial Internet Consortium. (2019). The Industrial Internet of Things Volume G1: Reference

Architecture. Version 1.9 June 19, 2019. URL: https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf.

[8] Lin, S-W, Murphy, B., Clauer, E., Loewen, U., Neubert, R., Bachmann, G., Pai, M., & Hankel, M.

(2017). Architecture Alignment and Interoperability: An Industrial Internet Consortium and

Plattform Industrie 4.0 Joint Whitepaper [White paper]. Industrial Internet Consortium. URL:

https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf

[9] Industrial Value Chain Initiative. (2016). Industrial Value Chain Reference Architecture (IVRA).

URL: https://docs.iv-i.org/doc_161208_Industrial_Value_Chain_Reference_Architecture.pdf

[10] IBM (2021). Industry 4.0 architecture for manufacturing. IBM Cloud Architecture Center.

URL: https://www.ibm.com/cloud/architecture/files/industry-40-architecture-pdf-

template.pdf

[11] Kassner, L., Gröger, C., Königsberger, J., Hoos, E., Kiefer, C., Weber, C., Silcher, S., &

Mitschang, B. (2016). The Stuttgart IT architecture for manufacturing. In International

Conference on Enterprise Information Systems (pp. 53-80). Springer, Cham.

[12] Resman, M., Pipan, M., Šimic, M., & Herakovič, N. (2019). A new architecture model for

smart manufacturing: A performance analysis and comparison with the RAMI 4.0 reference

model. Advances in Production Engineering & Management, 14(2), 153-165.

[13] Dainow, B., & Brey, P. (2021). Ethics By Design and Ethics of Use Approaches for Artificial

Intelligence. Retrieved from https://ec.europa.eu/info/funding-

tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-

use-approaches-for-artificial-intelligence_he_en.pdf

[14] Hashmi, M., Casanovas, P., & de Koker, L. (2018). Legal Compliance Through Design:

Preliminary Results. In Proceedings of the 2nd Workshop on Technologies for Regulatory

Compliance (pp. 59–72).

[15] Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Suman, R. (2021). Blockchain technology

applications for Industry 4.0: A literature-based review. Blockchain: Research and Applications,

100027.

https://www.din.de/en/innovation-and-research/industry-4-0/german-standardization-roadmap-on-industry-4-0-77392
https://www.din.de/en/innovation-and-research/industry-4-0/german-standardization-roadmap-on-industry-4-0-77392
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf
https://docs.iv-i.org/doc_161208_Industrial_Value_Chain_Reference_Architecture.pdf
https://www.ibm.com/cloud/architecture/files/industry-40-architecture-pdf-template.pdf
https://www.ibm.com/cloud/architecture/files/industry-40-architecture-pdf-template.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf

78

[16] Park, H. S., & Febriani, R. A. (2019). Modelling a Platform for Smart Manufacturing

System. Procedia Manufacturing, 38, 1660-1667.

[17] Elkhawas, A. I., & Azer, M. A. (2018, December). Security perspective in rami 4.0. In 2018

13th International Conference on Computer Engineering and Systems (ICCES) (pp. 151-156). IEEE.

[18] Hossain, M. T., Badsha, S., & Shen, H. (2020, September). PoRCH: A novel consensus

mechanism for blockchain-enabled future SCADA systems in smart grids and industry 4.0. In

2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1-7).

IEEE.

[19] Steindl, G., Stagl, M., Kasper, L., Kastner, W., & Hofmann, R. (2020). Generic digital twin

architecture for industrial energy systems. Applied Sciences, 10(24), 8903.

[20] Jeffay, K. (1993). The real-time producer/consumer paradigm: A paradigm for the

construction of efficient, predictable real-time systems. In Proceedings of the 1993 ACM/SIGAPP

symposium on Applied computing: states of the art and practice (pp. 796-804).

[21] IEEE. (2000). IEEE Recommended Practice for Architectural Description for Software-

Intensive Systems (1471-2000). IEEE. URL: https://ieeexplore.ieee.org/document/875998

[22] Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0:

an outlook. International journal of distributed sensor networks, 12(1), 3159805.

[23] Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry

4.0: a self-organized multi-agent system with big data based feedback and coordination.

Computer networks, 101, 158-168.

[24] Margetis, G., Apostolakis, K. C., Dimitriou, N., Tzovaras, D., & Stephanidis, C. (2022,

September). Aligning Emerging Technologies onto I4.0 principles: Towards a Novel

Architecture for Zero-defect Manufacturing. In 2022 27th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA) (to appear). IEEE.

https://ieeexplore.ieee.org/document/875998

79

Appendix A – Component refinement template

Figure 32: Architecture refinement – Component template distributed to partners (Cover page).

Figure 33: Architecture refinement – Component template distributed to partners (page 2).

80

Figure 34: Architecture refinement – Component template distributed to partners (page 3).

Figure 35: Architecture refinement – Component template distributed to partners (page 4).

81

Figure 36: Architecture refinement – Component template distributed to partners (page 5).

Figure 37: Architecture refinement – Component template distributed to partners (page 6).

82

Figure 38: Architecture refinement – Component template distributed to partners (page 7).

Figure 39: Architecture refinement – Component template distributed to partners (page 8).

83

Figure 40: Architecture refinement – Component template distributed to partners (page 9).

Figure 41: Architecture refinement – Component template distributed to partners (page 10).

84

Figure 42: Architecture refinement – Component template distributed to partners (page 11).

Figure 43: Architecture refinement – Component template distributed to partners (page 12).

85

Figure 44: Architecture refinement – Component template distributed to partners (page 13).

Figure 45: Architecture refinement – Component template distributed to partners (page 14).

86

Figure 46: Architecture refinement – Component template distributed to partners (page 15).

Figure 47: Architecture refinement – Component template distributed to partners (page 16).

87

Figure 48: Architecture refinement – Component template distributed to partners (page 17).

Figure 49: Architecture refinement – Component template distributed to partners (page 18).

[Component Name] deployment environment

18

Deployment Diagram
[Copy and paste the UML deployment diagram shapes and symbols
shown to the right (In Groups, editable), to build a comprehensive
deployment diagram that represents hardware and software
necessary for execution of the component functions].

[Resize and edit as you see fit. Replace the words in [brackets] only].

[Delete this text and extra shapes when you are done].

(Node): Physical equipment on

which something is deployed.

Indicates physical allocation of

artifacts. Use red letters to

describe hardware requirements

in detail (optional)

(Node): SW-based execution

environment for specific

executable Artifacts (e.g., Unity,

OS, etc.).

Any external entity (e.g., text file,

.dll file, etc.) related to execution,

and deployed on a Node

A dashed line from an artifact to a

Node indicates deployment of the

Artifact in that executable target.

<<device>>

[Device]

(optional)

Disk ctrl. = [e.g., RAID 5]

Disks = [e.g., N x XXX GB]

Processor = [e.g., X.X GHz]

RAM = [e.g., XXXX Mb]

<<Execution Env>>

[Env]

<<Component>>

[Component]

Entity that executes a function.

Provides and consumes

interfaces. Installed on a Node.

<<Artifact>>

[Component]

A straight line from one Node to

another indicates path of the

exchange of information between

two Nodes.

88

Figure 50: Architecture refinement – Component template distributed to partners (back cover).

