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Abstract—In the last few years, collaborative tools have in-
creased dramatically, partly to compensate for the distance
between people due to the pandemic and partly to allow activities
(work, entertainment, free time, etc.) to be carried out among
people without having to worry about geographical distances. In
this scenario, it was necessary to overcome the classic remote
meeting tools (e.g. video, audio, chat), which have a reduced
sense of presence. Extended Reality (XR) represents a Computer
Graphics (CG) based innovative technology particularly suited to
this purpose. Indeed, XR aims to develop Virtual Reality (VR),
Augmented Reality (AR), and Mixed Reality (XR) solutions that
can transform how people interact by increasing the sense of
presence. This last aspect depends not only on the virtual/real
objects and scene visualization but also on their interaction.
In this regard, human-computer interaction (HCI) techniques
represent a possible solution. However, these techniques depend
on specific devices, such as Head Mounted Display (HMD), Smart
Glasses, Depth and Tracking Cameras, etc., whose costs make
access difficult. For this reason, we propose a Hand Gesture
Recognition (HGR) system that can be used in XR applications
using a simple RGB camera. Our is a deep learning system based
on MediaPipe, the state-of-the-art (SOTA) for hand tracking
through simple RGB images [1], [2].

Index Terms—Hand Gestures, Deep Learning, Human-
computer Interaction

I. INTRODUCTION

The need to reduce distances among people to ensure
a high sense of presence has become one of the biggest
challenges in computer science and CG. In the last years,
more and more collaborative tools such as Mozilla Hubs,
VRChat, and other general purposes browser-based web 3D
tools [3] were developed and made accessible for users. Some
of them ensure user presence by allowing the creation of
personalized avatars [4], [5]. Generally, these tools guarantee
high performance in terms of a sense of presence when scene
visualization and interaction are performed using HMDs and
their controllers. However, more recent HMDs are suitable for
being combined with hand tracking devices, such as the Leap
Motion controller, to allow interaction using freehand [6] and
gesture recognition [7]. Furthermore, the last HMDs, such as
Oculus Quest 2 and Vive Focus 3, integrate on-board hand-
tracking sensors, capturing hand gestures directly and ensuring
greater ease of handling and ergonomics, increasing the sense
of presence, body ownership, embodiment, and agency [5], [8]
of the users. As these devices are not accessible to all users
due to their cost and usability, new technologies have recently

emerged that allow freehand and gesture recognition through
general-purpose devices. In this context, we propose a deep
learning approach that allows HGR to use a simple, low-cost
RGB camera.

In particular, we defined a system based on a well-structured
pipeline in which the landmarks predicted from the MediaPipe
Hands solution [2] are used as input to a simple feed-forward
neural network (FFNN). The main advantage of our approach
is that MediaPipe needs only a simple RGB hands-content
camera frame as input to predict hands-landmarks. They can
be obtained in real-time and are entirely independent of
the camera features. The predicted landmarks correspond to
the hand landmarks from which our FFNN can predict the
corresponding hand gesture. To train our FFNN, we defined
a dataset based on a dictionary of 15 gestures represented
by many combinations of open and closed fingers and hands.
Gestures are divided into static and dynamic based on their
behavior. The former consisted of the FFNN predicted gesture,
and the latter were obtained using the FFNN prediction as
an activation gesture and performing assertion on the hands-
landmarks for the subsequent frames.

We used our system for collaborative real-time 3D scene
interaction in the XR environment using the well-known Unity
3D game engine and its network library called Netcode 1. The
proposed 3D application is a simple authoring tool use case
helpful in building 3D scenes in real-time through collabora-
tive multi-user interaction. Since our system is trained with
landmarks captured in the egocentric mode [9], it can be used
with smart glasses as an on-device system.

The remainder of this paper is structured as follows: in
Section II an overview of related work was provided; in
Section III we provide a background and motivations; in
Section IV we described our proposed HGR system; A XR
collaborative authoring use case is described in Section V,
and finally the conclusions suggestions for future works were
provided in Section VI.

II. RELATED WORK

The 3D interaction with the hands benefits significantly
from using the HGR system [10]. The first step to having a
working HGR system is to choose the correct data acquisition

1https://docs-multiplayer.unity3d.com/netcode/current/about
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method to perform a determined task. In the literature, there
are different data acquisition approaches characterized by
using sensor gloves, markers, and hand images. The gloves
approach uses sensors that convert the hand motion into
electrical signals, which a computer must elaborate on. These
signals give information about the fingers’ coordinates and
the hand configurations [11], [12]. These devices can be very
precise, but they can be costly, heavy, and not very portable.
On the other hand, the marker methods can be considered
more straightforward, far less costly, and less heavy than
sensor gloves. These techniques are based on the use of gloves
with markers [13] or colored gloves [14] to locate the palm
and fingers. In detail, a simple RGB camera can be used to
identify the static positions of the markers or the color regions
linked to the palm and the fingers. With marker methods, it
is easier to retrieve the information about the finger position,
but the camera cannot obtain all the information about the
orientation because markers cannot be visualized for every
hand position. Also, the marker methods are sensitive to light
and background. For these reasons, new approaches based on
bare hand detection have been introduced. Some studies focus
on the reconstruction of the 3D hand model to detect the
hand [15]–[17]. Because having an accurate 3D reconstruction
can be computationally expensive, new methods for detecting
and analyzing the hand skeleton have developed. Skeleton-
based solutions adopt different techniques, such as multiple
RGB cameras [18], RGB-Depth sensor [19], or a single RGB
camera and two neural networks [2], to detect the hand skele-
ton. Skeletal features can be used for gesture recognition tasks.
An example is a work proposed by F. Yang et al. [20] which
adopted a Double-feature Double-motion Network to make the
skeleton-based gesture recognition model smaller and faster.
A. Caputo et al. [21] proposed a novel dataset formed by
static, dynamic, and fine gestures for the skeleton-based HGR
task. In recent years many virtual collaborative solutions have
been adopted in different applications fields (e.g. medical and
educational fields). Each collaborative system has a different
method for interaction with the virtual scene based on the
task to be performed. For example, C. Vuthea et al. [22]
chose head-mounted displays and their controllers to interact
with a virtual reality environment for liver surgery planning.
These devices are also employed by N. Capece et al. [23] in
a virtual reality application that permits users to collaborate
in the creation of a 3D environment with meshes and lights.
Other approaches, such as T. Piumsomboon et al. [24] use
optical hand tracking instead of controllers to allow gesture
recognition.

III. BACKGROUND AND MOTIVATIONS

Our work aims to provide an innovative and accessible
system that allows users to interact with collaborative 3D
scenes in the XR environment using their hands. Since most
of these interaction systems are based on specific devices
such as Leap Motion, Microsoft Kinect, or other RGB-D
cameras, we investigated the use of Deep Learning methods
to disengage from them, making the system accessible to

everyone. However, the use of these specific devices and
the corresponding output [19] is well-structured to provide
an optimal hand tracking [25] which is basically for the
HGR [26]. Indeed, in recent times, many deep learning-based
approaches have shown how it is possible to obtain good
hand tracking using simple RGB webcams [27], [28] onboard
on most PCs, smartphones, and wearables. One of the most
promising and suitable approaches for our purpose is MediPipe
Hands [2], which provides optimal documentation and a set
of well-structured hand landmarks. MediaPipe consists of
lightweight Deep Learning models [1] which can also be used
on devices with limited computing resources. Hand tracking in
real-time allows us to understand where the user’s hands and
their landmarks are positioned to the reference system of the
3D scene, providing information for the scene interaction (e.g.
manage collisions, movements, etc). As shown in Figure 1, the
MediaPipe Hand tracking solution uses a pipeline consisting of
two models: a palm detector and a hand landmark model. The
first locates the palm defining a bounding box oriented with the
hand using the current RGB frame. Such a frame is cropped
based on the predicted bounding box to reduce the need for
data augmentation and allow the other model to be more
precise in the hand landmarks localization. The Palm Detection
Model, which is based on BlazeFace [29], is used on the first
frame or when the hand prediction is lost, while for the other
frames, the landmarks prediction of the previous frame is used
to derive the palm bounding box, decreasing the computational
effort. The hand landmark model is used to predict from the
cropped frame 21 hand-knuckle coordinates (see Figure 4)
detected inside the hand regions through regression. These
coordinates consist of components of x, y, and z. The latter is
obtained using the relative depth concerning the wrist, and for
this reason, the coordinate spaces are indicated as 2.5D. The
use of our interaction system in the XR collaborative authoring
tool is due to different research issues which are unsolved
with classic interaction systems, such as 6-DOF controllers,
gamepad, etc.. Such issues are the sense of embodiment,
presence, body ownership, and the sense of agency. The first
two feedback include the sense of self-location due to using
the user’s own hands and specific gestures to interact with the
3D scene. Another critical feedback is the body ownership
associated with the visual hand’s appearance and can be
obtained mainly in the context of AR and MR. Finally, hand
gestures ensure the sense of agency, related to the feeling of
user action control [30]. To develop the XR and collaborative
authoring purposes, we used the well-known Unity 3D game
engine, which supports several XR platforms. To implement
our use case, we used OpenXR, and the multi-user feature
was implemented using the Netcode library. This mid-level
networking library allows us to manage high-level protocols
and networking frameworks. Indeed, Netcode is very useful
for managing the concurrence, permissions, and ownership of
scene objects, also called gameObjects (Unity 3D term), using
basic RPC (Remote Procedure Call).
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Fig. 1: HGR pipeline: The first block represents the current input RGB frame captured using an RGB camera. The input is
processed with the MediaPipe Palm Detector Model and the Hand Landmark Model to predict the 2.5 hand-knuckle coordinates.
Each coordinate’s x and y components are processed from our FFNN to predict the current Hand Gesture.

IV. HAND GESTURES RECOGNITION

We defined a dictionary of 15 hand gestures based on
their possible use in an interactive 3D environment. These
gestures are derived from the state-of-the-art [21], [31], [32],
and are represented by several combinations of open and
closed fingers and hands. As shown in Figure 1, the input
of our approach is represented by the 21 hand landmarks
predicted from MediaPipe. Each landmark consists of x, y,
and z coordinates (see Section III), but we used only the
coordinates x, y, 2D ignoring the coordinate z, which is
more useful for tracking. We used these components of the
hand landmark model, which are defined in the pixel space as
input to a simple feedforward neural network (FFNN) with a
single hidden layer of 32 units (see Figure 1). The choice of
the units’ number was made by keeping a trade-off between
computational cost and real-time performance. Furthermore,
since the complexity of our network is low, we decided to
not use the hyper-parameters optimization methods [33] as we
have quickly and easily obtained the best configuration. We
use a rectified linear unit (ReLU) activation function on the
hidden layer because it is considered the better choice with
respect to the classical sigmoid and hyperbolic tangent [34]
allowing our FFNN to learn faster and perform better. On the
last FFNN layer we used a Softmax [35] activation function.

Although several approaches treat dynamic gestures using
data sequences such as recurrent neural networks (RNNs) [20],
[21], we decided to use a simple FFNN for several rea-
sons, including (i): RNNs and other data sequences based
approaches need to process the entire data sequence to provide
a prediction. Such an approach cannot be used to predict a
gesture and ensure that the associated action is performed in
real-time; (ii): the use of an RNN and similar assume that the
dynamic gestures are asynchronous and therefore predicted

Fig. 2: Static gestures: thumb up, thumb down, open hand,
closed hand, ok, pace, open index finger, rock.

only after the gesture has taken place; (iii): XR collaborative
applications are well-suited for synchronous dynamic gestures.
The use of our simple FFNN model maintains the real-time
performance of the whole process, reducing the computational
impact. Our proposed gestures are divided into two templates:
8 static gestures and 7 dynamic gestures. Static gestures shown
in Figure 2 are represented by a fixed hand pose directly
predicted by our FFNN. In particular, each set of coordinates
provided by the MediaPipe framework and based on the
current camera frame are used as input to our FFNN. We
consider the gesture represented from its output as valid.

The dynamic gestures shown in Figure 3 are characterized
by moving hands. The dynamic gestures can be further divided
into single and combo gestures based on the number of tracked
hands. These gestures can be activated by a different starting-
hand pose, keeping track of specific landmark positions. In
particular, we used specific static activation gestures - that
have been provided by our FFNN similarly to static gestures
- and we have made assertions on the landmarks predicted
by MediaPipe on the following frames to detect the type of
dynamic gesture performed by the user.

A single gesture is detected using a single hand and its pose
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Fig. 3: Single dynamic gestures: pinch, rotation, two-fingers
swipe, three-fingers swipe, and four-fingers swipe. Combo
dynamic gestures: rotation (two hands), pinch (two hands).

as an activation gesture (see Figure 3). In detail, there are
two, three, and four-finger swipe gestures, pinch, and rotation
gestures. For the swipe gestures, once the FFNN predicts their
corresponding activation gesture, it is possible to push a set
of subsequent hand poses in a small stack to establish the
movement’s direction. For each of these poses, it is possible
to consider one of the landmarks related to a hand phalanx
and assess if its x component is greater than the previous to
consider movement in the right direction and vice versa. In
this way, we can distinguish between left- and right swipes,
increasing the number of dynamic gestures. We consider the
distance between the index-knuckle distal phalanges and the
thumb-knuckle distal phalanges of subsequent hand poses
using a stack to detect the pinch-in and pinch-out behavior for
the single-hand pinch gesture. When this distance increases,
it is a pinch-in; otherwise, it is a pinch-out. The single-hand
rotation gesture is defined by considering two segments having
a common endpoint and measuring the angle between them
in real-time to establish whether it is a clockwise rotation,
if this angle increases, or counterclockwise if it decreases.
Combo dynamic gestures are detected using two hand poses
to perform two FFNN inferences, one for each hand. For the
combo pinch, when the initial hand poses are detected, the
distances and positions of the distal phalanges of the index
finger are used to establish the intensity of the gesture (see
Figure 3). The combo rotation is similar to the single rotation,
but the segment was computed between both hands’ two index-
knuckle distal phalanges.

To train our FFNN model, we developed a specific dataset
consisting of 130000 hand pose samples taken with different
hands and cameras and manually labeled. We split this dataset
after an initial shuffle as 20% validation-set and the remaining
as training-set. The testing was performed in real-time after the
training. In particular, we used the RGB sensor of the Intel
RealSense D455 camera with 1280 × 720 as resolution, the
40MP Huawei P30 back camera, and the 1080p MacBook

Fig. 4: Skeleton tracked by MediaPipe on both hands during
pinch and two-handed rotation.

Pro (M1 Pro) camera. The samples are distributed equally
among gestures. Each sample consists of 42 elements: the x
and y values for each of the 21 hand landmarks provided
from MediaPipe. As MediaPipe also allows egocentric hand
tracking, the samples are taken and labeled in egocentric and
non-egocentric modes. In this way, our approach can be used
with a simple RGB camera placed in front of the user or
XR devices such as smart glasses (with an RGB camera
onboard) in an egocentric view. The FFNN was trained for
2000 epochs with Adam optimizer [36] algorithm and 0.0001
as the learning rate, obtaining a prediction accuracy of 98%.

V. COLLABORATIVE AUTHORING

The proposed HGR system was designed and developed
to be used in a collaborative multi-user XR 3D environment.
Each proposed gesture is associated with a specific action in an
XR 3D environment. As explained in Section III we validated
our approach in a Unity 3D game engine environment taking
advantage of its Netcode mid-level networking library to allow
the multi-user scene authoring. For the testing purpose, such
an application was distributed among two clients equipped
with a simple RGB camera to track the hands’ landmarks and
predict the gestures. When the user clients are connected to
the scene, they can interact with visible gameObjects using
hand gestures. As shown in Table I we implemented a set
of user interaction actions associated with our designed hand
gestures. Our collaborative scene is empty when client users
connect for the first time; later, they can add or delete virtual
objects. They can be selected or deselected from a special
menu that can be opened or closed with the “Pace” gesture.
The objects can be selected and deselected from the menu or
scene by tapping them using the “Open Index Finger” gesture.
The user can navigate the menu via the “Three Fingers Swipe”
gesture, which allows it to be scrolled up or down. The selected
object can be added to the scene through the “Thumb Up”
gesture and deleted through the “Thumb Down” gesture. The
user will keep the selection on the current added object and
have its property. All the objects selected by the user will
have his ownership, which can be acquired by another client
or passed and kept by the server. When the user deselects
an object in the scene, its ownership is transferred to the
server, making it available to be acquired by another client,
ensuring its concurrency. The client user can select, deselect,
add, and remove more than one object, creating an object’s
group that will behave as a single object. Group objects can
be translated with the “Pinch In” and released with the “Pinch
Out” gestures. On the other hand, an object belonging to a
group can be individually grasped and translated through the
“Closed Hand” gesture and released through the“Open Hand”
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Gesture Action
Thumb Up Add the selected objects from the menu into the

scene
Thumb Down Remove the selected objects from the scene
Open Hand Release an object
Closed Hand Grab and move a scene object
Ok Confirm changes
Pace Open/Close objects menu
Open Index Finger Select an object on the menu or scene
Rock Release all selected objects
Pinch Grab, move, and drop an object group in the

scene
Rotation Rotate the single selected object
Two Fingers Swipe
Right/Left

Undo/Redo

Three Fingers Swipe
Right/Left

Scrolls up/down the objects menu

Four Fingers Swipe
Right/Left

Select the next/previous material of the selected
object

Combo Rotation Rotate groups of selected objects
Combo Pinch Zoom In and Zoom Out of the scene objects

TABLE I: User interaction actions are associated with hand
gestures. The direction of the two and four fingers swipe
gestures is irrelevant, while the three swipe gesture direction
allows the up/down scrolling of the objects menu.

gesture. Likewise, the single object belonging to a group can
be rotated using the “Rotation” gesture, and the group can
be rotated using the “Combo Rotation” gesture. The single or
group of objects can be zoomed in and out using the “Combo
Pinch” gesture. It is possible to change some components,
such as the materials of the objects, by selecting them through
the “Four Finger Swipe left/right” gesture, scrolling through
the next and the previous one. Furthermore, all objects can
be deselected with a “Rock” gesture. Finally, we implemented
two outline functionalities of the application, such as the “Ok”
gesture to confirm changes and the “Two Finger left/right”
gesture to perform undo/redo options. In Figure 5 the scene
in desktop mode is shown for example purposes, using AR to
visualize hand tracking. Hand movement is reported for also
debugging in the 3D scene using a specific representation.
However, this scene can also be viewed in virtual, AR,
and MR using a smartphone and HMD or a simple Google
Cardboard. Our gesture recognition system can also be used
in the egocentric mode, as explained in Section IV since it
has also been trained with hands tracked in this way.

VI. CONCLUSIONS

We propose an HGR system in which both hand land-
marks and gestures are predicted from two neural networks.
The first is the MediaPipe Hands solution, which predicts
hand landmarks from simple RGB images. The second is
an FFNN which takes the predicted landmarks and provides
the corresponding hand gesture. We implemented two types
of gestures: statics, and dynamics. The first are represented
by the direct prediction of our FFNN, while the second are
obtained also considering the position of the hand landmarks
and their movements. Finally, we implemented a simple multi-
user XR collaborative authoring tool based on Unity 3D,
OpenXR, and Netcode to validate the effectiveness of our

system. Our approach can also be used on the XR web
browser environment. Given the multiplatform suitability of
the web browser and the CG application support, the XR
environment can also be approached using mobile devices (e.g.
smartphones and smart glasses) that allow for a reasonably
immersive feeling (e.g. through cardboard). In the future, we
will conduct a user study to evaluate users’ learning curve for
hand gestures and the usability and sentiment of our system
in the XR environment. One of the main challenges that must
be addressed in future developments is to determine which
are the optimal gestures for the type of action the user must
perform within the XR scene.
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