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Abstract. Industry 4.0 provides a favourable environment for processing and analysing mas-
sive amounts of data by implementing and integrating innovative Internet of Things (IoT), ar-
tificial intelligence (AI) and machine learning (ML) techniques. Their use permits to identify
opportunities for improvement and increases the efficiency of the equipment and overall man-
ufacturing process, which industrial companies strive for. One of the most common measures
of efficiency is the Overall Equipment Effectiveness (OEE), which quantifies the efficiency of
a manufacturing system or piece of equipment. It considers factors such as availability, perfor-
mance, and quality of the equipment. This work presents a methodology to detect, in a robotic
antenna manufacturing line, variations in the OEE data reception rate leveraging IoT and ML
techniques. The line consists of a set of robotic cells and machines that sequentially execute
each one of the production processes required for the manufacture of antennas. The study aims
at identifying patterns in the reception of data from machines, propagating alerts when data that
do not follow these patterns are found. Firstly, a dataset containing the OEE historical informa-
tion for each machine is created. Secondly, the dataset is split into train and test sets. Lastly,
different ML algorithms are trained to create a model capable of detecting unusual variations
in the OEE data reception rate, and later on compared. Fluctuations in the rate at which data is
received could indicate issues on the production line, and detecting these anomalies automati-
cally enables proactive maintenance to be performed without human involvement. The analysis
results show that more accurate results are obtained by using supervised ML classification tech-
niques instead of unsupervised learning for anomaly detection.

Key words: machine learning, supervised learning, unsupervised learning, Overall Equipment
Effectiveness, smart manufacturing, industry 4.0

1 INTRODUCTION

Industry 4.0 [1], also known as the Fourth Industrial Revolution, is a current trend of au-
tomation and data exchange in manufacturing technologies. It is experiencing a strong impact
on all areas of manufacturing, leading to increased efficiency and productivity, as well as the
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creation of new business models and value chains. This revolution is marked by the emergence
of new technologies such as robotics, analytics, artificial intelligence (AI), machine learning
(ML), and the Internet of Things (IoT), among others. Manufacturers are incorporating these
new technologies into production facilities and throughout their operations. These technologies
enable the integration of physical and digital systems, resulting in the creation of smart factories
[2] that are capable of autonomous decision-making and self-optimization.

There are several problems associated with traditional assembly lines that Industry 4.0 tech-
nologies are seeking to address. These include i) inefficiency: traditional assembly lines can
be inefficient due to bottlenecks, errors, and waste, ii) inflexibility: it can be difficult and time-
consuming to change the production process on an assembly line, iii) quality control: quality
control on an assembly line can be challenging because it is difficult to inspect each prod-
uct individually and iv) labour costs: assembly lines can be labour-intensive, leading to high
production costs. In order to measure the efficiency of assembly lines, Overall Equipment Ef-
fectiveness (OEE) [3] measure is used. This metric indicates the percentage of manufacturing
time that is truly productive, identifying inefficiencies in the assembly line while reducing costs,
reducing downtime and supporting quality control.

ML is a subset of AI that involves the use of algorithms to analyse and learn from data. It
can identify patterns and trends in data which enables data classification, anomaly detection or
making predictions. In [4] ML is used for estimating the OEE of machines in a production line
using historical data (dataset) obtained from real machines in a factory. The authors proposed
an approach for predicting the OEE values by using supervised and unsupervised learning. In
[5], the application of different AI and ML algorithms in real-case industrial scenarios, such
as quality prediction, process characterization, and predictive maintenance, and their impact
on OEE is described. In [6] it is proposed the use of hybrid analysis to improve the OEE
of semi-automatic assembly lines in the automotive industry. It presents a case study in which
hybrid analysis is used to identify the root causes of equipment failures and optimize production
processes, resulting to a significant increase in OEE. The work described in this paper aims at
detecting variations in the OEE data reception rate in a robotic antenna manufacturing line.
The manufacturing process for the antennas involves arranging a series of robotic cells and
machines in a sequence and performing the necessary production steps in turn. Variations in the
data reception rate may indicate anomalies in the production line and their automatic detection
allows proactive maintenance which does not require human intervention.

In this study, four supervised learning techniques (Decision Trees [7], Random Forest [8],
k-Nearest Neighbors [9], and Naı̈ve Bayes [10]) and one unsupervised learning algorithm (Iso-
lation Forest [11]) are used to detect variations in the OEE data reception rate. Two experiments
to evaluate the performance of the algorithms are conducted. In the first experiment, the IF al-
gorithm is used in an unsupervised setting to detect anomalies in the OEE data reception rate.
In the second experiment, the four supervised learning algorithms are employed to perform the
same task.

The rest of the paper is structured as follows: Section 2 describes the methodology and ex-
perimental setup. Section 3 includes a discussion of the results obtained. Finally, the concluding
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remarks are presented in Section 4.

2 MATERIALS AND METHODS

2.1 OEE data

As introduced before, manufacturing industries are constantly striving for higher profits by
optimizing their processes and increasing efficiency. To reach these objectives, the OEE global
indicator is used. OEE is a metric that measures the operational efficiency of equipment. It re-
flects the real production capacity of industrial equipment and reveals process wastage (rejects,
interruptions, breakdowns, slow speed, etc.) that prevent it from operating at full capacity. The
correct implementation of an OEE system has a direct impact on the performance to be obtained
from the manufacturing process. This is because machine downtime is reduced, the causes of
yield losses (bottlenecks and reduced speeds) are identified, and the product quality index is
increased, minimising rework and losses due to defective product production. This metric is
calculated taking into account three parameters:

• Availability: Measures actual productive time versus available time.

• Performance: Measures the actual production obtained against the production capacity.

• Quality: Measures the good parts produced against the total number of those produced.

The OEE data analysed in this work pertains to a robotic antenna manufacturing line. The
assembly line allows automatic assembly of antenna modules.

2.2 Data collection

The data used in this work was acquired by using a IoT agent to retrieve OEE data from the
antenna manufacturing line.

The dataset consists of 431,923 OEE data records obtained between September 1, 2022
and January 15, 2023. The OEE data records include information such as the timestamp, the
identifier of the machine to which the OEE values refer, the number of good, bad or missing
parts, the efficiency or the amount of time that the machine has been in operation.

2.3 Data selection and pre-processing

After obtaining the historical data, records containing incomplete fields were deleted. The
resulting dataset contains 373,436 records. After this, the dataset features used to train the
algorithms were established. First, in order to detect variations in the OEE data reception rate,
a new feature is added by using data fusion techniques. The new feature indicates, for each
machine in the antenna manufacturing line, the seconds elapsed since the last measurement
received of this machine. Moreover, one-hot encoding is used to produce a Boolean feature
for every day of the week. This is intended to enable algorithms to be able to detect patterns in
events occurring on certain days of the week. Additionally, hour is extracted from the timestamp
field and used to create an additional feature.
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The initial dataset does not contain labels. After an analysis of the dataset, patterns that fol-
low anomalous data were detected. The majority of the records have a delta time of between 60
and 70 seconds. Most of the remaining records are considered anomalous, with two exceptions.
Firstly, early on Mondays after the weekend shutdown, the first record received has a high delta
time (between 190,000 and 240,000 seconds). Secondly, the rest of the days of the week a
similar behaviour is appreciated. When the production line starts up, each machine starts oper-
ating and records with high delta times are received. These records should not be considered
anomalies, as they follow the expected behaviour of the production line.

Table 1 shows the features used during the experiments.

Table 1: Features used for the experiments.

Feature Type Description
Monday Boolean Indicates whether the record was taken on a Monday
Tuesday Boolean Indicates whether the record was taken on a Tuesday
Wednesday Boolean Indicates whether the record was taken on a Wednesday
Thursday Boolean Indicates whether the record was taken on a Thursday
Friday Boolean Indicates whether the record was taken on a Friday
Hour Numeric Hour at which the record was taken
Delta time Numeric Seconds elapsed since the last record for a given machine
Anomaly Boolean Indicates whether the record is anomalous

2.4 Unsupervised anomaly detection

Nowadays, there is an extensive range of outlier detection algorithms based on unsupervised
learning. Model-based approaches to anomaly detection typically involve building a profile of
normal instances and identifying deviations from this profile as anomalies. This approach is ex-
emplified by statistical methods, classification-based methods, and clustering-based methods.
However, these methods have two main shortcomings. Firstly, the optimization of the anomaly
detector prioritizes profiling normal instances over detecting anomalies, leading to potentially
inaccurate results and a high rate of false alarms, or missed anomalies. Secondly, many exist-
ing methods have high computational demands, limiting their use to smaller, low-dimensional
datasets.

Isolation Forest (IF) [11] is an unsupervised learning algorithm that specifically targets
anomalies by isolating them, rather than by creating a profile of normal instances. It builds
an ensemble of isolation trees for a given data set, and anomalies are identified as instances
with short average path lengths in the isolation trees. This method only requires two inputs:
the quantity of trees to construct and the proportion of outliers (contamination parameter) in the
data set. Utilizing a limited data set, IF is able to provide high-performing anomaly detection.

The contamination parameter is calculated during pre-processing by dividing the number of
anomalies by the total amount of available data. Its definition is given by:
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contamination parameter =
number of outliers

number of records
(1)

2.5 Supervised classifiers

Classification algorithms are a specific type of supervised learning algorithms that are used
to categorize data into discrete classes. These algorithms learn from labelled training data to
predict the class label of new data points based on their similarity to the patterns in the training
data. In addition to their traditional applications, classification algorithms can also be used for
anomaly detection. Anomalies, or instances that deviate from the expected normal behaviour,
can be treated as a separate class and detected through the use of classification algorithms.

This section describes the supervised ML algorithms used to create a model able to correctly
classify the rate of the received OEE data as normal or anomalous:

• Decision Trees (DT) [7]: This non-parametric method is used for both classification and
regression tasks. It has a hierarchical tree structure, consisting of a root node, branches,
internal nodes and leaf nodes.

• Random Forest (RF) [8]: It is a meta estimator that fits several decision tree classifiers on
several subsamples of the dataset and uses averaging to improve prediction accuracy and
control overfitting.

• K-Nearest Neighbors (KNN) [9]: This non-parametric method calculates the probability
of an element belonging to one group or another depending on the group to which the
nearest elements belong.

• Naı̈ve Bayes (NB) [10]: Naı̈ve Bayes is a probabilistic classifier based on Bayes’ theorem.
The model is called naı̈ve because it treats all proposed predictor variables as independent
of each other.

2.6 Validation metrics

Through an experimental evaluation, the performance of the models obtained during the ex-
periments has been verified. The metrics used for validation are the confusion matrix, accuracy,
precision, and recall. The confusion matrix (Table 2) is a tool used in classification models to
assess their performance. The matrix provides a summary of the number of correct and incor-
rect predictions made by the classifier, and it organizes the results by each class in the dataset.
The confusion matrix is based on the terms:

• True Positives (TP) are instances where the algorithm correctly indicates the presence of
a condition or characteristic.

• True Negatives (TN) are instances where the algorithm correctly indicates the absence of
a condition or characteristic.
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• False Positives (FP) are instances where the algorithm wrongly indicates the presence of
a condition or characteristic.

• False Negatives (FN) are instances where the algorithm wrongly indicates that a particular
condition or attribute is absent.

Accuracy is a performance measurement that defines the proportion of correct predictions
made by a model compared to the total number of predictions. Its definition is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision is a performance metric that evaluates the quality of predictions made by a classi-
fier. Its definition is given by:

Precision =
TP

TP + FP
(3)

Recall is a metric that evaluates the ability of a classifier to identify all relevant positive
instances. Its definition is given by:

Recall =
TP

TP + FN
(4)

Table 2: Confusion matrix for two-class classification problem.

Predicted values
Negative Positive

Actual values Negative TN FP
Positive FN TP

3 RESULTS AND DISCUSSION

In this section, the performance of the proposed experiments is evaluated through statistical
measures. As stated in the previous Section, the validation metrics used are the confusion
matrix, accuracy, precision, and recall.

As a preliminary step to the experiments, the data are labelled as anomalous or non-anomalous
according to the details given in Section 2.3.

3.1 Unsupervised learning experiment

During the first experiment, the IF algorithm was trained to detect anomalies in the OEE data
reception rate. A first estimate of the contamination was calculated (0.0054) and subsequently
tuned to achieve greater precision.

From the experimental results, it is observed that the obtained model provides a poor preci-
sion to identify the anomalies. Table 3 shows that this model is capable of successfully identify
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631 anomalies. However, it mistakenly identifies 1,386 records as anomalous and misses 1,398
anomalies. It is important to highlight that, although at first glance the 99.2% accuracy may
seem good (Table 6), models that always classify the data as normal would achieve a simi-
lar score. This is because the dataset is unbalanced (due to the inherent nature of anomalies).
Therefore, two additional metrics have been used to analyse the behaviour of the model: preci-
sion and recall. Both metrics show a result of 0.65. The value of precision indicates that when
the model predicts an anomaly it is correct the 65% of the times. On the other hand, the recall
reports that the model correctly identifies the 65% of the anomalies.

Table 4 and Table 5 present the confusion matrices obtained from the models with a contam-
ination factor of 0.005 and 0.0058, respectively. The model with the contamination factor of
0.0058 performs better as it is able to detect more anomalies, 661 in total. In the problem under
consideration, false negatives carry a higher cost than false positives. Thus, it is desirable to
increase recall at the expense of precision. As seen in Table 6, the model with a contamination
factor of 0.0058 also exhibits better recall (0.66). While it may be possible to slightly improve
the results through fine-tuning the contamination factor, the IF algorithm struggles to identify
anomalies with good precision. IF is not capable of detecting anomalies with a recall of more
than 0.7. It often misinterprets periodic events, such as the commissioning of facilities after
the weekend or the start of the workday, as anomalies (FP), or classifies anomalies as normal
records (FN).

Table 3: IF - Confusion matrix (contamination parameter = 0.0054).

Predicted values
Negative Positive

Actual values Negative 370,021 1,386
Positive 1,398 631

Table 4: IF - Confusion matrix (contamination parameter = 0.005).

Predicted values
Negative Positive

Actual values Negative 370,109 1,298
Positive 1,466 563

Table 5: IF - Confusion matrix (contamination parameter = 0.0058).

Predicted values
Negative Positive

Actual values Negative 369,908 1,499
Positive 1,368 661
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Table 6: Anomaly detection - results of the evaluation metrics.

Contamination
parameter Accuracy Precision Recall

0.005 0.92 0.65 0.64
0.0054 0.92 0.65 0.65
0.0058 0.92 0.65 0.66

3.2 Unsupervised learning experiment

The second experiment was conducted by applying supervised learning techniques. More
concretely, four classification algorithms have been selected and trained (NB, DT, RF and
KNN). During this experiment, the dataset has been divided into training data (60%) and test
data (40%). For this reason, confusion matrices of these experiments do not contain the same
number of records that in the previous experiment.

As seen in Table 7, the performance of NB is worse compared to results obtained in the
previous experiment, correctly identifying 141 anomalies. Moreover, although its precision is
better (0.74), recall only reaches a value of 0.57 (Table 11). The model is therefore discarded.

Table 8 contains the results of the confusion matrix of the model resulting from training the
DT algorithm. It can be observed that this model succeeds in correctly classifying 955 of the
965 anomalies of the data. In addition, it does not make any false-positive error (precision=1),
only failing to misinterpret 10 anomalies as regular data (recall=0.99).

On the other hand, RF model performs slightly worse than DT. Table 9 indicates that this
model has 955 true positives, 0 false positives and 30 false negatives. This implies that its
precision is 1 and recall is 0.98. Lastly, the KNN model achieves nearly the same result as
DT model. KNN model satisfactory identifies 954 out of 565 anomalies (Table 10), having a
precision of 0.99 and a recall of 0.99.

Table 7: NB - Confusion matrix.

Predicted values
Negative Positive

Actual values Negative 148,259 150
Positive 824 141

Table 8: DT - Confusion matrix.

Predicted values
Negative Positive

Actual values Negative 148,409 0
Positive 10 955
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Table 9: RF - Confusion matrix.

Predicted values
Negative Positive

Actual values Negative 148,409 0
Positive 30 935

Table 10: KNN - Confusion matrix.

Predicted values
Negative Positive

Actual values Negative 148,386 23
Positive 11 954

Table 11: Classification - results of the evaluation metrics.

Model Accuracy Precision Recall
NB 0.9934 0.74 0.57
DT 0.9999 1 0.99
RF 0.9997 1 0.98

KNN 0.997 0.99 0.99

3.3 Comparison of machine learning models

After comparing the results of the different models, it is concluded that supervised learning
methods are better able to model the problem under study. The fact that patterns resulting
from the start-up of the production line after certain periods of inactivity are unusual and at the
same time should not be considered as anomalies, makes it difficult for unsupervised anomaly
detection algorithms to detect real anomalies.

For this problem, training the dataset using labelled data allows the supervised algorithms
to correctly infer which records are anomalous. Of all the models obtained during training, the
best is the one trained using the DT algorithm, being able to correctly identify 955 out of 965
records and only failing to incorrectly identify 10 anomalies.

4 CONCLUSIONS

This paper presents a methodology to detect variations in the OEE data reception rate in a
robotic antenna manufacturing line using IoT and ML techniques. The ability to detect unusual
variations in the OEE data reception rate leads to proactive maintenance for the manufacturing
industry. Therefore, the use of IoT and ML technologies provides a valuable tool for industrial
companies to monitor and optimize their equipment and production processes.

The results of the study show that supervised ML classification methods are more effective in
detecting variations in the OEE data reception rate compared to unsupervised learning methods.
Unsupervised methods struggle to distinguish between real anomalies and patterns resulting
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from the start-up of the production line after periods of inactivity. Thus, supervised algorithms
that are trained with labeled data are more effective in accurately identifying the anomalous
records. Among the models obtained during training, the best model was obtained using the
DT algorithm, which was able to correctly identify 955 out of 965 records and only failed to
identify 10 anomalies.

Future work will be directed towards integrating the selected model into an end-to-end sys-
tem capable of retrieve OEE data in real time. The system will make use of the model to identify
whether the data is non-abnormal and if so, notify the production line managers.
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