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Abstract. Recent technological achievements in computer vision and machine learning have
provided promising solutions in industrial quality control. As automated solutions are hard to
integrate in the manufacturing process, a common practice during battery line assembly involves
the manual investigation of the battery parts which is both inefficient and time consuming. We
focus on a challenging production stage in the assembly line where human inspection is not
feasible and the appeared defects can only be inspected in the later stages of production. For
this purpose, we propose an in-situ system that automates the quality control process and per-
forms defect diagnosis by accurately identifying anomalies in the current production stage. The
implemented system aims to monitor the production line and visualize defective occurrences in
battery assembly line, by utilizing deep neural networks (DNNs) and examining the defects on
real production samples, collected with a machine vision system. In order to decide the opti-
mal configuration for the specific task, we perform a cross-evaluation of various state-of-the-art
(SOTA) DNN architectures, specialized in object detection. Furthermore, we explore copy-
paste data augmentation mechanisms to generate additional training data from a small number
of defective samples. The system is initially validated on the localization of defects in indus-
trial samples, using mean average precision (mAP) as a metric for the performance evaluation
and then validated on the classification of defective and non-defective samples, using F-score,
precision and recall as evaluation metrics.

Key words: Deep learning (DL), Smart Manufacturing, Defect object detection, Battery man-
ufacturing industry, Production line monitoring
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1 INTRODUCTION

The increasing concern over the environmental crisis has led to a growing need for eco-friendly
energy storage options. The development of reliable and efficient systems has become imperative
in this regard. The introduction of artificial intelligence (AI) technologies into battery production
lines has the potential to significantly reduce the occurrence of errors during the assembly process.
Intelligent quality control systems are being developed in battery manufacturing and assembly
lines to enhance the reliability the products and to drive investment and purchase interest towards
the use of electric vehicles [1], as well as renewable energy sources [2]. Therefore, integrated
solutions [3] that include Internet of Things (IoT) networks for real-time data observation and
acquisition, AI systems that utilize sensor data to determine the battery’s state at each stage of
the assembly process, and an intelligent warning system that consistently notifies the technical
staff of potential anomalies can contribute to the creation of a zero-defect industry.

The manufacturing process of batteries involves assembling individual components through
several stages, which constitutes the majority of the process in a continuous production line.
Each stage introduces varying degrees and types of wear and inaccuracy, necessitating separate
research into each stage. This study focuses on the process of wrapping an insulating sheath,
called a separator, which provides physical and electrical isolation between opposite electrodes
[4]. Common defects that occur during this stage include holes, abrasions, and wrinkles on
the insulating casing’s surface [5]. Furthermore, misplacements of the separator around the
electrodes and on top of the production line are prevalent. Batteries with the wrong orientation
on the production line and elements protruding from the separator that should naturally wrap
them are frequent occurrences. The separator is the primary safety component of the battery
cell and thus, it is critical to detect defects accurately and on time. Furthermore, production
costs from raw material waste, material replacement and logistic expenses are also important.
Therefore, accurate fault detection and localization are crucial in reducing the aforementioned
issues and producing defect-free battery separators.

Machine vision can be an effective method for automatically detecting battery separator
defects. However, implementing machine vision systems in manufacturing processes is chal-
lenging due to the diverse materials, structures, and properties of battery separators. Deriving
image processing parameters for separators with dissimilar optical properties requires manual
adaptation and expert knowledge, resulting in the use of costly service engineers. To overcome
these challenges, researchers have proposed optimized machine vision system designs and a
methodical approach for faster parameter fitting, using deep neural networks.

In this study:

- we apply copy paste technique for data augmentation of defective samples from battery
production line.

- we benchmark five state-of-the-art object detection algorithms on the task of defect detec-
tion.

- we investigate the best approach, in both performance and inference time, to automate
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defect detection in battery assembly lines.

2 METHODOLOGY

This section provides a comprehensive account of the implementation procedure, which
focuses on the proposed neural network models, namely Faster R-CNN, RetinaNet, Mask R-
CNN, YOLOv7, and YOLOv8. An analysis of the architecture of each model is presented to
shed light on its design and functionality. Moreover, a thorough description of the constructed
dataset for the study is given, followed by an explanation of the metrics utilized to evaluate the
models’ performance.

2.1 PROPOSED NETWORKS

In recent years, Deep Learning (DL) approaches have revolutionized the field of defect
detection [6] [7], with methods based on convolutional neural networks (CNNs) achieving state-
of-the-art performance. These methods typically consist of a backbone network that extracts
features from the input image and a detection head that performs object detection using these
features.

Object detection refers to the process of identifying and locating objects in images or videos
and is critical in computer vision for various applications such as surveillance, self-driving cars,
and medical imaging. Object detection methods are categorized into two types: single-stage and
two-stage methods. Single-stage methods directly predict object class labels and bounding boxes
in a single step and are faster than two-stage methods. However, they can suffer from lower
accuracy due to processing large numbers of object proposals. Two-stage methods generate
object proposals and refine them to provide accurate bounding boxes and class labels. These
methods can be slower but achieve higher accuracy, making them suitable for applications where
precision is critical. Examples of single-stage methods include YOLO [8] and SSD [9], while
R-CNN [10] and its variants such as Fast R-CNN [11] and Faster R-CNN [12] are examples of
two-stage methods.

In the subsections, below, we describe five object detection algorithms for evaluating defect
detection on a dataset containing defective images of battery separators.

2.1.1 Faster-RCNN

The Faster R-CNN [12] is a highly accurate object detection algorithm that uses a two-stage
framework to detect objects in images. It is based on the Region-Based Convolutional Neural
Network (R-CNN) [10] architecture and consists of a Region Proposal Network (RPN) [12] and
a Fast R-CNN [11] detection network. The algorithm employs a Feature Pyramid Network (FPN)
[13] to generate a feature map that captures object details at multiple scales and resolutions. The
RPN generates object proposals by predicting objectness scores and bounding box offsets for
each anchor box at multiple scales and aspect ratios. The proposals are then passed to the Fast
R-CNN detection network, which extracts features from the proposed regions and uses them to
classify and refine the bounding box coordinates of the objects. The algorithm is trained using a
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multi-task loss function that jointly optimizes the RPN and the Fast R-CNN network. The loss
function comprises two components, a classification loss and a bounding box regression loss:

L = Lcls + Lbox (1)

L({pi} , {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (2)

where, pi is the predicted probability of anchor i being a positive sample, p∗i is the binary
groundtruth label specifying whether anchor i is a positive sample, ti are the predicted four
coordinate parameters, t∗i are the ground truth coordinates, Ncls is the normalization term for
the classification task, Nbox is the normalization term for the regression of the bounding box
coordinates, λ is a parameter used to balance the weights of the classification loss Lcls and the
bounding box regression Lbox and, finally, Lreg is the smoothed L1 loss.

2.1.2 RetinaNet

RetinaNet [14] is a leading-edge one-stage object detection algorithm that utilizes a Feature
Pyramid Network (FPN) [13] to enable the detection of objects of different sizes and scales in
images. The RetinaNet architecture utilizes an FPN to produce a feature pyramid that includes
features from multiple scales. It also employs a Feature Fusion module to combine features
from different scales to improve the accuracy of object detection. In the detection subnetwork,
RetinaNet predicts objectness scores and bounding box regression offsets for each anchor box at
multiple scales and aspect ratios.

CE(p, y) =

{
− log(p) if y = 1

− log(1− p) otherwise (3)

pt =

{
p if y = 1

1− p otherwise (4)

CE(pt) = − log(pt) (5)

To tackle the class imbalance problem, RetinaNet introduces a focal loss function that modifies
the standard cross-entropy loss by down-weighting the contribution of well-classified examples
and increasing the contribution of misclassified examples.

CE(pt) = −αt log(pt) (6)

FL(pt) = −(1− pt)
γ log(pt) (7)

FL(pt) = −αt(1− pt)
γ log(pt) (8)

Here, y ∈ ±1 specifies the ground truth class and p ∈ [0, 1] is the model’s estimated
probability for the class with label y = 1, a ∈ [0, 1] is a weighting factor, which the value a
for class 1 and 1 − a for the class −1. This weighting factor handles the class imbalance in
the dataset. (1 − pt)

γ is a modulating factor to the cross entropy loss, with tunable focusing
parameter γ ≥ 0.
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2.1.3 Mask R-CNN

The Mask R-CNN [15] algorithm is an advanced object detection and instance segmentation
method that improves upon the R-CNN [10] architecture by adding a third branch to predict object
masks, in addition to object bounding boxes and objectness scores. The architecture incorporates
a Feature Pyramid Network (FPN) [13] that generates feature maps at different scales and uses a
Region of Interest (RoI) Align layer [15] to enrich them with spatial information. The network
generates region proposals using a Region Proposal Network (RPN) [12] that predicts objectness
scores and bounding box offsets for every anchor box at multiple scales and aspect ratios. The
RoI Align layer then extracts features from the feature maps corresponding to each proposal, and
the three branches predict the objectness score, bounding box offset, and object mask. Finally,
the object mask branch generates a binary mask for each RoI by applying a sigmoid function
to the output of a fully convolutional network. Mask R-CNN is trained using a multi-task loss
function that combines the classification loss, the bounding box regression loss, and the mask
loss:

L = Lcls + Lbox + Lmask (9)

Lmask = − 1

m2

∑
1≤i,j≤m

[
yij log ŷ

k
ij + (1− yij) log(1− ŷkij)

]
(10)

Here Lcls and Lbox are identical to the ones used in Faster R-CNN, yij is the label of a cell
(i, j) in the groundtruth mask for the region of size m×m, ŷkij is the predicted value of the same
cell in the mask learned for the groundtruth class k.

2.1.4 YOLOv7 & YOLOv8

The YOLO [8] object detection algorithm is an efficient real-time system that treats object
detection as a regression problem. YOLO uses a single neural network to simultaneously
predict class probabilities and bounding box coordinates of multiple objects in a given image.
The efficiency of the convolutional layers is crucial for achieving fast inference speeds. To
improve learning power, YOLOv7 [16] minimizes the gradient distance by selecting a final layer
aggregation method, which includes an extended version of the ELAN computational block called
E-ELAN [16]. A new technique for scaling the network depth and width simultaneously while
concatenating layers together is proposed, which maintains optimal model architecture while
allowing for scalable model size. Re-parameterization techniques aim to enhance the robustness
of the model by averaging a set of model weights. Module-level re-parameterization techniques,
which target specific components of the network with distinct re-parameterization strategies,
can improve the generalization and robustness of object detection models. The addition of an
auxiliary head at an intermediate location can be beneficial in improving the performance of
the model, and experiments were conducted to explore different levels of supervision for the
auxiliary head in YOLOv7. YOLOv8 [17] is a highly recognized model for image segmentation
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tasks due to its exceptional speed, accuracy, flexibility, and enhanced developer experience
improvements. Its advanced architecture, pre-trained models, and unified framework for training
models have made it a preferred solution for real-time applications including object detection,
instance segmentation, and image classification. These attributes make YOLOv8 a state-of-the-art
model for image segmentation tasks.

2.2 DATASET

Acquiring defective image samples from the production line, where the error rate is typically
small, is a challenging task. Industries with a low error rate often have robust quality control
procedures in place, which prevent defective products from reaching the end consumer. Addition-
ally, it is time consuming and costly to collect defective samples from production, while creating
a large and diverse dataset is critical for training AI models. In the examined production stage,
various types of defects can appear including: perforations, ruptures, imprinted markings, and
paint residue, indicating faults in the separator material. Additionally, instances of misaligned
seam placement, exposition of the positive plate, wrinkling at the separator border, and improper
orientation of electrodes, commonly referred to as lag, were also noted. An indicative example
of a normal and a defective sample is depicted in Figure 1, while the various defect types are
presented in Figure 2.

(a) Normal separator (b) Defective separator

Figure 1: Example of a normal (a) and a defective (b) separator, with the latter containing ruptures on its
surface.

In our work, we address the problem of data scarcity, applying a copy-paste data augmentation
procedure to generate sufficient amount of data for DL training. By using techniques such as
image cropping, rotation, and scaling, it is possible to create a large and diverse dataset from a
small number of samples [18]. This can be particularly useful for training AI models to detect
and classify defects, as it allows the model to learn from a variety of different examples and
become more robust to variations in the appearance of defects.

Using a machine vision camera, Imaging Source DFK 38GX304 12Mpixels, installed in the
production line, we obtained color images of size 3000 × 4096 from 15 defective samples and

1201



Anastasios Tzelepakis, Lampros Leontaris, Nikolaos Dimitriou, Evangelia Koukidou, Dimitrios Bollas, Aristoklis
Karamanidis and Dimitrios Tzovaras

(a) Wrinkling (b) Imprinted marking (c) Misaligned seam (d) Paint residue

(e) Perforation (f) Lag (g) Rupture (h) Exposed plate

Figure 2: Different types of defects.

2000 normal samples. The defective samples represented all the defective categories that could
appear in the production. Through copy-paste augmentation, we created a dataset comprising
4000 defective samples with dimensions, containing a total of 5990 defect instances. In Table 1
we see in detail the instances per category, included in train and test set. Each generated image
includes one or two defect instances. We meticulously considered the approximate positioning
of each defect type on the battery separator’s surface. We achieved this by extracting a grid of
all possible locations where a particular defect can occur and then pasting the cropped defect at
the designated point. An indicative example is illustrated in Figure 3. We see, that given a pair
of defective and normal sample, we use accurately annotated defective regions of the defective
samples and copy-paste them to the normal samples. We use 80% of the total data for training
and the remaining 20% for testing, resulting in 3200 training images, and 800 testing images.

Table 1: Number of instances per defect type in training and test set.

Defect type Wra Imb Msc Prd Pere Lag Rupf Expg Total
Training set 1445 502 471 520 522 439 446 435 4780
Test set 357 120 125 118 113 126 126 125 1210

a Wrinkling, b Imprinted marking, c Misaligned seam, d Paint residue, e Perforation, f Rupture, g Exposed plate
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copy-paste

Scaling

Rotating

Defective Image

Normal Image Generated Images

Figure 3: Copy-paste augmentation method.

2.3 METRICS

In every deep learning model, a suitable metric is required to impartially assess the model’s
performance and capabilities, as well as its limitations. In the context of classification tasks,
metrics are commonly determined by: True positives (TP), False positives (FP), False negatives
(FN) and True negatives (TN) [19]. The precision, recall and F-score metrics quantify the
proportion of correctly classified samples relative to the total number of samples, whereas the
Intersection over Union (IoU) compares the overlap between the predicted mask and the ground
truth label.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Fscore =
2× Precision×Recall

Precision+Recall
(13)

IoU =
TP

TP + FN + FP
(14)

Mean Average Precision (mAP) is a performance metric widely used in object detection
tasks. It quantifies the precision and localization accuracy of an algorithm in detecting objects
within an image and is computed by the mean of the average precision (AP) for all classes. AP
is calculated by determining the area under the precision-recall curve for a given class. The
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utilization of mAP as a metric enables the comprehensive evaluation of an algorithm’s capability
to detect and locate objects of different sizes and categories, yielding a single scalar value for
overall performance assessment. The formula for computing mAP is given by Equation 15

mAP =
1

N

N∑
i

APi, (15)

where N is the number of classes, and APi is the AP for class i. Since Precision is dependent
on IoU, mAP[0.5:0.95] is commonly used [19] to consider the average for a number of IoU
thresholds.

3 EXPERIMENTAL RESULTS

For all the experiments we used the same environment, using GPU: NVIDIA GeForce GTX
1080 Ti 11GB, CPU: Intel i7-8700K, RAM: 64 GB, software environment: Python 3.9, Pytorch
backend. During the training, for all the models the same process was followed which is to train
each model until convergence. During evaluation, for each of the trained models, an image is
provided as input and the model generates the coordinates of the bounding boxes, the predicted
class and the confidence score for each detected instance as an output.

The experimental results are presented in Table 2, where we report both mAP and inference
time for each model. We see that both YOLO architectures outperform the other approaches,
while YOLOv8 achieves the best mAP of 92.20%, in comparison to the other networks. Secondly,
we notice that YOLOv7 achieves slightly lower mAP. The YOLOv8 network has an average
inference time of 0.007 seconds, equivalent to a detection speed of 142 frames per second. This
performance level satisfies the real-time inspection requirements of production lines. For the
rest of the approaches, YOLOv7 is approximately 2 times slower than YOLOv8, while the other
are 8-10 times slower. The average precision (AP) reflects the YOLOv8’s ability to accurately
detect and localize the majority of the defect types, achieving an AP that exceeds 0.950 for these
specific classes. Conversely, it is evident that YOLOv8 does not perform well for small-scale
defect types, such as perforations and ruptures. For these particular defect types, YOLOv8
achieves its worst performance, with AP scores of 0.619 and 0.840, respectively.

The classification of battery separators as defective or not is a critical task for operators in
the battery production line. In this regard, we utilize the outputs of the trained object detection
models to classify an image containing a battery separator as defective if the object detection
model outputs a detection of a defect with a confidence score exceeding a predefined threshold
of 0.5. This threshold enables a flexible and customizable classification process, which can be
adapted based on the desired level of risk tolerance. To evaluate the performance of the proposed
methodology, we enhanced the test dataset with 1600 normal images to realistically represent
the production line. We employed precision, recall, and f1-score as evaluation metrics to assess
the classification performance of the model.

The findings presented in 3 indicate that the Mask R-CNN model demonstrates a slightly
superior performance to the YOLOv8 architecture for the classification of battery separator
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Table 2: Experimental results for object detection. For the total number of classes, mAP@[IoU=0.5:0.95]
and inference time are calculated.

Faster R-CNN RetinaNet Mask R-CNN YOLOv7 YOLOv8
Defect type Average Precision
Wrinkling 0.760 0.694 0.782 0.884 0.962
Imprinted marking 0.960 0.990 0.970 0.984 0.991
Misaligned seam 0.744 0.598 0.845 0.943 0.994
Paint residue 0.936 0.925 0.948 0.986 0.995
Perforation 0.740 0.661 0.710 0.673 0.619
Lag 0.914 0.880 0.972 0.994 0.995
Rupture 0.649 0.709 0.698 0.714 0.840
Exposed plate 0.849 0.847 0.908 0.941 0.976
mAP 0.819 0.788 0.854 0.889 0.921
Inference time 0.067s 0.060s 0.070s 0.017s 0.007s

Table 3: Precision, recall and f-score on the evaluation of classifying a battery separator image as
defective or normal.

Model Precision Recall F-score
Faster R-CNN 0.887 0.990 0.930
RetinaNet 0.981 0.887 0.929
Mask R-CNN 0.912 0.993 0.944
YOLOv7 0.940 0.932 0.927
YOLOv8 0.956 0.942 0.940

images. Specifically, the Mask R-CNN model achieves an F-score of 0.944, whereas the
YOLOv8 model achieves an F-score of 0.940. The other network architectures evaluated in the
study exhibit a relatively lower performance, with F-scores around 0.930.

Figure 4 presents a qualitative comparison between the examined approaches, on a defective
image from the production. The actual defect of the sample is the presence of two wrinklings, as
indicated in Figure 4a. The results reveal that RetinaNet fails to detect any defects on the surface
of the battery separator. Conversely, Faster R-CNN, Mask R-CNN and YOLOv7 models manage
to identify only one of the two existing wrinklings. Lastly, YOLOv8 architecture accurately
identifies the defects and produce the bounding boxes and the confidence scores for the predicted
defect class. YOLOv8 generates a confidence score of 0.62 and 0.91, respectively for the two
defects. Erroneous detections were observed mostly on the separator’s periphery, coinciding
with areas of suboptimal system illumination [20].
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(a) Input Image (b) Faster R-CNN (c) RetinaNet

(d) Mask R-CNN (e) YOLOv7 (f) YOLOv8

Figure 4: Defect detection results for a defective image sample containing two wrinklings.

4 CONCLUSIONS

In our work, we used a machine vision system to capture images of defective battery separators.
To construct a separator defect dataset, we applied copy-paste augmentation to generate eight
distinct types of defects. We then evaluated the performance of five object detection algorithms on
this dataset. The findings indicate that YOLOv8 outperformed the other algorithms, achieving a
mean average precision (mAP) of 92.20% and an inference time of 0.007 seconds per image. We
examined the models’ classification performance on real production line conditions. Although
Mask R-CNN outperformed YOLOv8 in terms of F-score by 0.42%, the latter exhibited a 10×
faster inference time and thus is more appropriate for deployment in the current production line.

Based on the results, we demonstrated that the proposed approach has the potential to be
deployed in production, indicating to the operator the location and size of the defects accurately.
In future work, we plan to investigate the potential of this solution in other production stages,
where it is challenging to apply the same augmentation procedure due to the complexity of
defects. Finally, we plan to enhance the lighting conditions in the inspection scene in order to
alleviate the adverse impact of suboptimal illumination in the performance of the models.
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