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Abstract. This work aims to investigate and effectively apply the new deep learning methods 
for object detection from the family of EfficientDet-Lite algorithms for the detection of 
incorrect assemblies in the antenna manufacturing process. In the proposed methodology, state-
of-the-art pre-trained models are exploited and fine-tuned in a real industrial dataset with 
limited samples. The defects considered in the dataset include metal cracks, plastic cracks, and 
housing imperfection. The proposed approach with EfficientDet-Lite2 can achieve an Average 
Precision (AP50) of 73.68%. A Yolov5-based model was also developed and extracted 
comparable results. Moreover, the Average Precision for each class was computed. For 
conducting the experiments, the TensorFlow Lite object detection API was employed. The 
results of this research work are promising and support further investigation of these types of 
deep learning for defect detection in manufacturing. 
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1 INTRODUCTION 
In the manufacturing process, assembly operations are critical and require extreme caution [1]. 
During the manufacturing production line, the assembly of materials for the construction of a 
complete object is the main assignment. Regarding the antenna assembling, metallic source 
reflectors are connected with plastic, for the production of the final product. Even with cutting-
edge equipment, errors still occur in the manufacturing process. One of the main reasons for a 
defective part is that the process is quite complicated, and it depends on the quality of each 
individual material. For this reason, proper quality control is essential.  

Manual inspection of the whole process, including quality checks on each material is 
extremely deficient and expensive, thus it is not applicable for large-scale manufacturing 
processes. For this reason, automated processes, based on computer vision methodologies, have 
been developed and properly adapted, and offer new capabilities for visual inspection 
automatically, efficiently and in less time. 

Visual quality inspection is related to image classification, which practically recognizes data 
patterns from numerous different categories. Object detection is also relevant to image 
classification, with the addition of evaluating the position and the size of an object, utilizing a 
bounding box. Object detection can be considered as an advanced image classification approach 
for defect detection, since it can be directed to identify defects along with interpretation. 

Literature review revealed numerous defect detectors. The most popular detectors for real-
time applications, i.e. for applications where fast inference is crucial, are the YOLO family [2], 
[3], EfficientDet [4], CenterNet [5], etc. Recently, transformer-based models were proposed, 
such as Visual Transformer [6], that inherit concepts previously applied to natural language 
processing and are modified for object detection. 

In [15] the authors addressed aluminum casting with the development of EfficientDet and 
YOLO. Due to the lack of defective samples, the researchers generated simulated ellipsoidal 
defects onto the X-ray training images. Regarding the original images, they were used for the 
testing procedure. They experimented with different thresholds for Intersection over Union 
(IoU), to evaluate the model’s ability to detect small defects. According to the results, Yolov5 
achieved the highest mAP with a value of 0.90 utilizing an IOU of 0.25. The training duration 
we 2.5 hours. 

In [16] EfficientDet was exploited for ultrasonic material inspection. The researchers 
experimented with the versions of D0-D2 of EfficientDet and compared the results with other 
state-of-the-art detectors. The dataset contained over 4000 B-scan images, with 68 unique 
defects. The results demonstrated that EfficientDet-D0 achieved the best mAP with a value of 
89.6%. Moreover, 5-fold cross-validation was utilized. The authors proposed the usage of the 
K-means algorithm for the calculation of anchors, which has been adopted in the recent versions 
of YOLO for improving mAP. 

In [17] the authors developed EfficientDet-D0 to address fabric defect detection. The authors 
tested five different fabric datasets and utilized data augmentation. K-means clustering was 
utilized for the shapes of the anchor boxes. The proposed model achieved over 90% mAP. It 
was also tested with NVIDIA TensorRT, where the authors proved that the computation time 
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can be 2.5 times faster than the cloud-based method for reasons related to data transmission 
latency. 

It is worth mentioning that real industrial data are often scarce or imbalanced [7]. This poses 
a challenge in the development of robust solutions with deep learning, and hence transfer 
learning and data augmentation techniques have been employed in the literature. TensorFlow 
Object Detection (TFOD) offers an Application Programming Interface (API) [8] which 
contains state-of-the-art pre-trained models. These models were trained on the Common 
Objects in Context (COCO) dataset [9] and are presented in TFOD with their metrics in mAP 
and inference speed. In addition to the provided models, TFOD offers flexibility in the 
customization of both the processing and the training parameters. In the current study, an 
exploration was conducted regarding the development of a defect detection model, regarding 
the produced errors in antennas performed in the assembly process. For this reason, 
EfficientDet-Lite models were examined, since they achieve high metrics, with a small 
execution time.  

The main contribution of this research work is the investigation of the modest EfficientDet-
Lite versions and the application of the most capable for defect detection in the real time 
production process. In addition, the investigated models were further compared to the YOLO 
v5 that is a well-known detector used in various domains. In this current study, the considered 
defects in antennas are 1) metal cracks, 2) plastic cracks, and 3) housing imperfections. The 
proposed model provides remarkable results and can detect malfunctions effectively. 

The rest of this paper is organized as follows. In section 2, the dataset, the methodological 
framework, and the models developed are presented. Section 3 presents the derived results.  
Section 4 includes the discussion and conclusion of the study. 

2 MATERIALS AND METHODS 

2.1 Dataset 
The employed dataset in this work contains images directly acquired from (1) production 

and (2) laboratory measurements, using 2D area scan cameras. The cameras used in this study 
are a FLIR Blackfly S BFS-PGE-200S6C and a Baumer VCXG-241C. The output resolution 
of the sensors in width and height are 4401×2898 for the FLIR and 4096 × 3000 for the Baumer 
sensor, respectively. The dataset acquisition was focused on the defective samples that were 
scarce. Overall, the acquired dataset contains 161 defective samples and 25 healthy ones.  

The defects were manually annotated with the use of LabelImg software to produce the 
required XML files in the PASCAL VOC [10] format. The defect labels were assigned by 
experts, and belong to three groups, as mentioned earlier: a) metal crack, b) plastic crack, and 
c) housing imperfection.
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Figure 1: Our corresponding dataset contains three categories (a)metal crack (Red) (b) plastic crack (Yellow) 
(c) housing imperfection (Blue). 

2.2 EfficientDet 
The EfficientDet algorithm is a recent methodology for object detection. It can reach higher 

accuracy and efficiency, in comparison to other state-of-the-art object detectors. EfficientDet 
is actually a family of modes, that includes eight different variants. The accuracy and running 
time depend on model size [10] [11]. EfficientDet is known for outperforming benchmark 
models like CNNs (Convolutional Neural Networks) as it utilizes a small number of parameters 
[12]. EfficientDet uses EfficientNet as its backbone network, Bi-FPN as its neck, and 
convolutional layers as its head. Regarding the backbone network (EfficientNet), it can obtain 
reliable results. EfficientNet is proposed by Google, and it contains a scaling strategy, to 
balance network width and depth and image resolution.  EfficientNet can perform surprisingly 
well and accomplish adequate accuracy and efficiency  [12]. Regarding the neck, BiFPN is a 
weighted bi-directional feature pyramid network, which is equipped with learnable weights to 
extract the features from input images by employing top-down and bottom-up multi-scale 
fusion. EfficientDet contains a compound scaling method, that evenly scales the width, depth, 
and resolution for the feature network, the backbone network, and the box prediction 
simultaneously. The combination of EfficientNet as the backbone, Bi-FPN, and the compound 
scaling method produces a new category of object detectors that utilize fewer parameters and 
require, therefore, a smaller number of floating-point operations (FLOPs). More specifically, 
EfficientDet utilizes 28% fewer FLOPs than YOLOv3 and 30% fewer FLOPs than RetinaNet. 
According to the literature, the current object detectors are classified as single- or two-stage 
models, depending on whether they employ a region-of-interest protocol. Two stage-detectors 
are more accurate, while one-stage detectors are simpler and more lightweight. Recent trends 
show that one-stage detectors are preferred due to their efficiency and clarity. A difficulty that 
is often observed in object detection is the calculation and demonstration of multi-scale features. 
For this reason, former object detection algorithms predict with the support of the pyramidal 
feature hierarchy, which is extracted from backbone networks. An innovative methodology is 
feature pyramid network (FPN) that it introduces a top-down process for multi-scale features 
[13]. The EfficientDet-Lite models considered in this work, contain five versions [0-4] and 
belong to an object detection family of models derived from the EfficientDet architecture [14]. 
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2.3 YOLOv5 
You Look Only Once (YOLO) belongs to stage detector algorithms and is among the most 

popular object detection algorithms.  Redmond et al. [2] proposed YOLO in 2016, which was 
an innovation for real-time object tracking at the time. Similar architectures to YOLO are quite 
complex since each component needs to be trained separately. For this reason, YOLO is based 
on regression methodology. YOLO’s architecture contains 24 convolutional layers, with two 
fully connected layers. However, YOLO has experienced issues with generalization, especially 
when the objects are small in size, or the image has different dimensions. 

YOLOv5 is a recent variant of the YOLO family that contains fewer parameters [15]. It 
consists of three main parts: a) the Backbone, b) the Neck, and c) the Head. Regarding the 
Backbone of YOLOv5, it utilizes Cross Stage Partial Networks (CSPNets) with DarkNet, which 
is known as the CSPDarknet. CSPDarknet has demonstrated an efficient improvement 
regarding processing speed. Regarding the Neck of YOLOv5, it uses Path Aggregation 
Network (PANet) as a parametric polymerization mechanism. In general, the neck of a network 
is applied for the generation of feature pyramids, for the generalization of object scaling, i.e., 
the detection of an object in different images with different sizes and backgrounds. In PANet, 
the feature grid is joined with the feature layers, where the information can be transmitted to 
the proposed subnetwork. Regarding the head of YOLOv5, it generates anchor boxes for the 
utilization of feature maps and extracts bounding boxes with class probabilities [16].  

2.4 Methodology 
The methodology employed in this work consists of the following steps: 

1. Data Collection: The dataset utilized in this study consists of images directly
acquired from production and laboratory measurements, obtained with 2D area scan
cameras. In overall, the acquired dataset contains 161 defective samples and 25
healthy ones. Data were collected from a real industrial environment, provided by
Televes.

2. Image Annotation: Expert knowledge was employed to manually annotate the
images and identify all possible defects. Annotated images were needed to be used
as input to the training process. The Python library “labelimg” [17] was used for the
annotation of images. The location of each defect was marked with a bounding box.

3. Splitting:  The dataset into training, testing and validation subsets. Following
common practice, the training and validation datasets were employed for the
development of the model, while the testing dataset was exploited for metric
evaluation and performance assessment.

4. Training: Training the object detection model refers to the injection of the images
along with the according annotated labels of each defect for the extraction of metrics.
The training and validation datasets were employed to calculate the parameter values
of the model.

5. Evaluation: The testing dataset, unseen so far by the model, was utilized to calculate
specific metrics and assess the model’s efficiency and stability.
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3 RESULTS 
This study attempts to address an automatic pipeline for detecting defects. For this purpose, 

many experiments were conducted to the optimal configuration for the provided dataset, while 
preserving generality. The developed model was on a workstation with the following technical 
specifications: AMD Ryzen 7 5800H CPU with Radeon Graphics, NVIDIA Ge-Force RTX 
3060 GPU and 16 GB RAM. The model was developed in Python 3.9.13, with TensorFlow 
2.9.3, Keras 2.9.0, and tflite_model_maker 0.3.4. A thorough exploration was performed by 
testing different values for batch size (4, 8, 16, 32) and epochs like (400, 500, 600, 700, 800, 
and 900) for different versions of EfficientDet-Lite models. 

Common, yet robust, metrics were employed to assess performance of the model: 
1. Precision. This metric demonstrates the ratio of the instances that are predicted as

positives and are truly positive. The average precision for every category of objects
is defined as AP.

2. Intersection over Union (IOU). This indicates the deviation of the predicted result
from the actual output. It can be calculated by the intersection of the bounding box
and the true annotation box over the union of two boxes [18].

 The best-performing models are listed in Table 1, along with the values of the performance 
metrics. 

Table 1: Performance metrics of the various EfficientDet-Lite models and YOLOv5. (class1: metal crack, 
class2: plastic crack, class3: housing imperfection) 

Model 
architecture 

AP AP50 AP75 AP of 
class1 

AP of 
class2 

AP of 
class3 

Training 
Time 

Lite0 20.48 50.38 11.68 12.3 23.15 18.35 4955 sec 
Lite1 22.59 58.35 25.15 11.45 30.56 25.12 7025 sec 
Lite2 19.71 73.68 12.35 12.20 21.44 18.49 6044 sec 

YOLOv5 69.10 74.20 43.20 23.40 36.50 69.60 6052 sec 

It is clear that EfficientDet-Lite2 has outperformed the rest of the models. The AP50 of 
73.68% indicates that the proposed model can correctly detect the defects.  The proposed model 
proved its ability to differentiate between the three possible outputs and correctly detect the 
defects. It produced satisfactory results, regarding the small dataset. Results in Figure 2 support 
that the proposed model correctly detects the plastic crack with adequate precision, even though 
the background is unclear, very complex and with poor lighting conditions, which could easily 
lead to misinterpretations.  
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Figure 2: Efficient defect detection using EfficientDet-Lite2 on an image with complex background and poor 
lighting conditions. The model successfully detects the missing part on the right side. 

In Figure 3, it is demonstrated that the model detected a plastic crack (broken part) with 21% 
precision at the bottom right corner. Both predictions were made in real time. 

Figure 3: Efficient crack detection (broken part) using EfficientDet-Lite2. 

4 SUMMARY 
Efficient defect detection in real-time production can benefit from artificial intelligence 

methodologies for the different stages of the manufacturing process. Artificial intelligence 
technologies can be adjusted to production conditions and towards Zero Defect Manufacturing. 
In smart manufacturing, the most popular methodologies are based on deep learning 
classification, image analysis and object detection. 

This paper developed and assessed an automatic real-time defect detection system based on 
a deep learning methodology. EfficientDet-lite variants were utilized with different parameters 
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regarding batch size and epochs. The best results were obtained with EfficientDet-Lite2 with 
batch size 4 and 700 training epochs. The main advantage of EfficientDetLite-2 is that it can 
detect all classes correctly, even in images with a complex background and poor lighting 
conditions. The performance of the rest of the EfficientDet-Lite variants were not significantly 
inferior regarding the average precision. The performance of the proposed model is validated 
with various IoU levels of precision and with higher extracted average precision for each 
possible class. The proposed method provides efficient results to defect detection for a 
complicated dataset, coming from a real industrial environment, that has not been explored 
before. The performance of YOLOv5 was satisfactory regarding training time and parameters 
but exhibited inferior defect detection capabilities.  

Future extensions of this work will focus on experimental analysis of other state-of-the-art 
models, including the rest of YOLO variants. 
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