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Abstract. Surface inspection is a critical procedure of quality control during metal process-
ing. The raw material is processed in various production stages including cutting, punching,
trimming, scrubbing and polishing. Each of these stages introduce different parameters that are
controlled by human operators. Sub-optimal parametrization of the machining process causes
the appearance of defects in the metallic surface. Quality control typically involves human
inspection at the last stages of the manufacturing where the defects cannot be repaired, while
due to surface specularity, manual inspection is error-prone and time consuming. In this work,
we propose a vision-based system to automate quality control, that comprises two machine vi-
sion sensors, an illumination system and a mounting frame. We investigate segmentation-based
Deep Learning approaches using the UNet architecture for the localization of defects in images.
We validate the proposed method in a real sink manufacturing case using high resolution image
data that has been collected during production, containing various types of surface defects. We
examine the effect of different network backbones and loss functions in the performance of the
examined approaches, using precision, recall and f-measure metrics. The findings demonstrate
the potential of the system to be used in the production in order to provide accurate detections
and thus accelerate inspection.
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1 INTRODUCTION

With the advent of Deep Learning (DL) and Industry 4.0, automated quality control solutions
in Smart Manufacturing have been in the focus of industrial research. Even if Artificial Intel-
ligence (AI) solutions have already reached a level of maturity in several application domains
[1], different industrial scenarios introduce challenges risen by the inspected objects’ properties
and specific production requirements. On one hand, an automated defect detection system must
cope with a wide variety of surface defects, with different shapes and sizes, while on the other
hand, time restrictions are typically involved, requiring inspection to be completed in a short
time. These challenges have made traditional image processing approaches for defect detection,
impractical and unreliable. DL have demonstrated efficiency and robustness in a wide range of
industrial domains and specifically in surface inspection for weld defects [2], casting defects
in auminum alloys [3], road pavement cracks [4], fabric defects [5], lithium-ion battery defects
[6], hard metal defects [7], automotive inspection [8, 9] and PCB defects [10].
In our work, we focus on defect detection methods for metallic surfaces in sink industry. Dur-
ing sink manufacturing, surface inspection is the most critical process of quality control, while
it is typically performed in the final stages of manufacturing, where recovery actions cannot
be efficiently applied. This causes increased scrap rates but even when reworking is feasible,
production delay raises manufacturing costs. Initially, the raw material is processed through a
multi-stage production line where cutting, punching, trimming, scrubbing and polishing of the
material takes place. Each of these machining processes, introduce different types of defects
which can appear on different locations of the metallic surface. The defects are caused by sub-
optimal parametrization of the process or by pre-existing defects of the original raw material,
that were propagated to later stages. Inspection is typically performed in the final stage be-
fore product packaging and involves human judgement and expertise. Manual inspection has
not been yet widely replaced by automated solutions since in many industrial applications, the
performance of these systems fail to reach sufficient accuracy levels. However, even if manual
inspection is the preferred method for many industries, it is still an error-prone and time con-
suming process.
In order to automate surface inspection in sink manufacturing, this work provides the following
contributions

- We designed a sink inspection system using machine vision sensors, illuminaton and a
mounting frame to secure the object for inspection.

- We created a dataset of surface defects using sink images from the production.

- We benchmark UNet variants for defect detection and examined the impact of different
loss functions on the performance.

2 RELATED WORK

In recent literature, defect inspection in metallic surfaces has been studied by several works.
In [11], the authors study 120 publications for automated computer vision based defect detection
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systems for application in flat steel manufacturing. They identify the main challenges derived
from sub-optimal imaging conditions and processing of large amount of image data, which
raises the need of efficient trade-off between accuracy and complexity. The paper classifies four
main catregories of defect detection methods, the statistical, the spectral, the model-based and
the machine learning. Machine learning and specifically Deep Learning has been widely stud-
ied and proven to surpass traditional approaches in image processing. Therefore, latest studies
focus on DL methodologies for all the computer vision tasks such as image segmentation, object
detection and image classification. In [12], the authors propose CVAE network (Convolutional
Variational Autoencoder) for the automated defect detection in metallic surfaces, demonstrating
performance gain of 3% in F1-score adding a data augmentation step to deal with data scarcity.
In another work, [13], an object detection system is proposed for the detection of surface defects
on steel strips. The authors propose an improvement of the known network YOLO (You Only
Look Once) in order to be able to perform in real-time with high performance. The experimental
results demonstrated mean Average Precision (mAP) of 97.5% , surpassing other approaches.
In [14], the authors use RetinaNet and combine classification, detection and tracking for the
defects on metal surfaces from the automotive industry. They exploit the temporal coherence in
consecutive frames from a camera and demonstrated performance in mAP of 76%, outperform-
ing other methodologies that use static images. In another recent work, [15], a visual inspection
system is proposed for defect detection on metal surfaces. The author developed Deformable
Convolution and Concatenate Feature Pyramid Neural Network, DCCFP-Net and showed per-
formance gain of approximately 3% compared to MobileNet [16].
In semantic segmentation tasks, UNet has been proposed in [17], initially for biomedical im-
age segmentation. UNet is built upon the fully convolutional network approach. However, it
is adjusted so that it can work efficiently with few training images, while improving segmenta-
tion precision. Since the original version, various modifications and improvements have been
studied, based on UNet encoder-decoder structure [18, 19, 20]. In [21], the authors employ a
weighted attention mechanism and skip connections to propose Res-UNet in order to segment
precisely small thin retina vessels. In the same domain, in [22] a spatial attention mechanism
and structed dropout convolutional blocks are introduced to the UNet architecture. The pro-
posed SA-UNet achieves state-of-the-art performance on retinal vessel segmentation task. In
[23], Eff-UNet is presented, which combines EfficientNet [24] as the encoder for feature ex-
traction and UNet decoder for reconstructing the segmentation map. The proposed approach
achieved 0.6276 mean Intersection over Union (mIoU) in a dataset concerning an unstructured
driving environment. UNets have been widely studied in the field of medical imaging but re-
cent works have demonstrated their efficiency also in different domains. In [25] the authors
study a UNet-based semantic segmentation network for detecting defects in textured surfaces.
In their work, they investigate the effectiveness of approach using weakly annotated data, show-
ing performance of 0.6762 in mIoU. In [26] a novel approach is proposed for defect detection,
based on Depth-wise Squeeze and Excitation Block-based Efficient-UNet, DSEB-EUNet. The
experiments demonstrated performance of the proposed approach of 0.7180 in mIoU which
surpasses other UNet approaches, including Eff-UNet. Finally, in another recent work [27], the
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authors use atrous spatial pyramid pooling, ASPP, and propose S-Unet which exploits different
receptive fields to improve segmentation accuracy of targets with different sizes. The proposed
network outperforms UNet in precision, recall and F-score, in the industrial cases of surface
defect segmentation on commutators and steel surfaces.

3 PROPOSED APPROACH

Following the recent research on defect detection using semantic segmentation approaches,
in our work we compare several UNet variants. We investigate the potential of the networks to
identify and localize defective regions on metallic surfaces, applied in sink-manufacturing.

3.1 UNet architecture

The UNet family of architectures follow a U-shaped network structure, which is a symmetric
fully convolutional neural network. In Figure 1, the general architecture of UNets is illustrated.
The architecture is based on an encoder-decoder design, where in the encoder part, the input
follows a contraction path and in the decoder part, the extracted features follow an expansion
path. The contraction path consists of a stack of convolutional and pooling layers, E[1− 5], to
capture the image context while the expansion path cosists of transposed convolutions, D[1−4],
in order to enable the precise localization of the target regions. Between the symmetrical con-
traction and expansion paths the skip connections represent the operation of copying and con-
catenating the image features. These connections help propagate the context information from
the low level features to the high level features. Since the encoder part of the UNet archi-
tecture follows the typical deep convolutional structure, modifications in the structure can be
made using other networks as the encoder, including ResNet [28] and EfficientNet[24]. The
ResNets employ residual blocks which solve the problem of vanishing gradient when training
deeper neural networks. From ResNet family of networks, several variants have been proposed
from lower to higher network complexity, namely ResNet-18, ResNet-34, ResNet-50, ResNet-
101 and ResNet-152. In our work we examine ResNet-50 variant which is commonly used as
backbone network, since it balances the trade-off between accuracy and speed. EfficientNets
employ inverted residual blocks to reduce the network’s parameters, while a scaling method is
used to uniformly scale the network width, depth and resolution. In [24], eight EfficientNet
models were initially examined with different complexity, starting from the less to more com-
plex, EfficientNet-B0 to EfficientNet-B7. In our work, we examine three of these models, the
versions B0, B3 and B7 in order to cover three different network complexities.

3.2 Metrics

For semantic segmentation tasks, the goal is to classify each pixel of the image based on
the examined categories. In our case we have two categories, the defective and non-defective.
We will use precision, recall and F1-score [29] to investigate the performance of each model.
F1-score is equivalent to Dice Coefficient (DC) which is commonly used in segmentation tasks
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Figure 1: UNet general architecture.

and represents the similarity between two samples [30]. The higher the DC score, the larger
the overlap between the prediction and the ground truth and thus the more accurate the model
in localizing the defect. Additionally, we will report IoU metric which is also widely used and
is given by Equation 1, where TP, FP, FN are the true positive, false positive and false negative
pixels.

IoU =
TP

TP + FP + FN
(1)

3.3 Data description

The machine vision system that we designed for sink inspection is illustrated in Figure 2
on the left. The system consists of two machine vision sensors, Hikrobot MV-CS200-10GC
of 20 Megapixels. For the illumination of the environment, we used two LED luminaires in
order to acquire the images under adequate light. The sensors were mounted inside a closed
inspection booth, so that the reflections from external lights are limited. In order to create
the image dataset, the sink samples were placed in the inspection booth and high resolution
images were captured from the samples. The size of the original images were 5472 × 3648.
Due to limited amount of defective samples, we followed an augmentation procedure to create
sufficient amount of data in order to efficiently train the DL networks. We initially annotated
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the defects of the dataset using open-source software. Then, from the defective regions, we
extracted image patches of size 384 × 384, cropped from the original images of sink samples
that were captured with high resolution. The cropping of the patches was performed using a
shifting window scheme on the original image with overlapping of 25% between consecutive
patches. Indicative examples of the original images are shown in Figure 2 (right) while in
Figure 3 we see indicative examples of the extracted image patches, with surface defects of
different types and shapes, including scratches, dents and bumps. Each image patch includes
defective (foreground) and non-defective (background) pixels and we aim at examining how
UNet variants can identify and localize the defective regions.

cameras
luminaires

Figure 2: The inspection system comprises machine vision sensors and luminaires (left). On
right, sink samples as captured by the system.

The final dataset comprises of 1494 image patches for training, 117 for validation and 670
for testing. The image patches for each of the train, validation and test dataset correspond to
different sink samples. Thus, the test dataset is used during evalution in order to investigate the
generalization capability of the trained network. In order to avoid overfitting problems when
training the network and increase the diversity of the training data, we applied common image
augmentation techniques involving color transformations and geometric transformations.

3.4 Network training

For the training of the network, we trained for 50 epochs and for each epoch the performance
of the trained model on the validation dataset was monitored. After each period of 7 consecutive
epochs, if the validation performance of the model was not improved, an early stopping was
applied. After the training, the performance of the final model on the test dataset was recorded
for the evalution. The network was trained using Adam optimizer with learning rate of 0.0001.
The experiments were performed using PyTorch library and the NVIDIA RTX 3080Ti graphics
card. As mentioned in Section 3.3, the original images were annotated and then cropped using
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Figure 3: The dataset includes image patches with different types of surface defects.

a shifting window scheme to create sufficient amount of training data. During the training of
the network, the color images are fed to the input of the network while the segmentation mask
is used as the target. In Figure 4, we can see an image patch that is fed to the network and
the corresponding segmentation mask that is used for the calculation of the loss function. For
the loss function we investigated the performance impact of three different loss functions, the
binary cross entropy loss Lbce, Equation 2, the dice loss Ldice , Equation 3 and the weighted
combination of the two Lwbd, Equation 4. In the equations, yi ∈ {0, 1} denotes the ground
truth label while pi ∈ [0, 1] is the predicted probability and n is the number of image pixels. In
Equation 4, Lwbd is a weighted combination of Lbce and Ldice and w1, w2 represent weighting
factors for each term. In our experiments, we concluded by experimentation that the values
w1 = 0.05 and w2 = 0.95 provided performance gain for most of the experiments.

Lbce = −
n∑

i=1

(yilog(pi) + (1− yi)log(1− pi))) (2)

Ldice = 1− 2
∑n

i=1 piyi∑n
i=1 p

2
i +

∑n
i=1 y

2
i

(3)

Lwbd = w1Lbce + w2Ldice (4)

4 EXPERIMENTAL RESULTS

As mentioned in Section 3.2, we use Precision(PR), Recall (REC), F1-score (F1) and IoU
to measure the performance of the compared models. For each model, the performance was
calculated using the actual segmentation mask which was compared to the predicted mask, in
pixel level. The goal of the evaluation is to examine the capability of the model to localize
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Figure 4: The defective regions are annotated (left and middle) and the binary segmentation
mask (right) is used as the network’s target.

accurately the defective regions and distinguish them from the background, which corresponds
to non defective regions. We performed a total of 15 experimental runs for all the combinations
of the models with the examined loss functions. For each of the experiment, we report in Table
1 the performance of the model on the test set. In all the experimental runs, we use the same
network configuration parameters and same augmentation steps during training.

Table 1: Segmentation results on test dataset

Model Loss PR REC F1 IoU

UNet
Lbce 0.469 0.066 0.116 0.061
Ldice 0.301 0.142 0.193 0.107
Lwbd 0.184 0.268 0.218 0.122

Res50-UNet
Lbce 0.886 0.421 0.571 0.399
Ldice 0.604 0.518 0.558 0.387
Lwbd 0.647 0.587 0.615 0.444

EffUNet-B0
Lbce 0.779 0.546 0.642 0.473
Ldice 0.644 0.685 0.664 0.497
Lwbd 0.672 0.653 0.662 0.495

EffUNet-B3
Lbce 0.843 0.495 0.624 0.453
Ldice 0.802 0.574 0.669 0.503
Lwbd 0.770 0.618 0.686 0.522

EffUNet-B7
Lbce 0.831 0.627 0.715 0.556
Ldice 0.734 0.690 0.712 0.553
Lwbd 0.721 0.717 0.719 0.561

From the results, firstly we notice that for the original UNet, the performance is poor and it
indicates that the model failed to converge. This can be justified by the fact that the network
did not use pre-trained weights and was trained from scratch. Adding ResNet and EfficientNet,
pre-trained on ImageNet [31], as backbones in UNet architecture, helps as expected with the
convergence of the training and significantly boost performance. Firstly, we notice that even
using the light version of EfficientNets, B0, as backbone, we get approximately 5% improve-
ment in both IoU and F1-score, using Lwbd loss function, compared to using ResNet-50. We
also see that using the dice loss function provides better results than binary cross entropy when
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training EffUNet-B0 and B3. However, using the weighted combination of both, we achieved
improvement when training UNet, Res50UNet, EffUNet-B3 and B7. For example, for EffUnet-
B3, using the weighted loss function improves f1 score by 1.7% and IoU by 1.9% while for
EffUNet-B7, it improves F1-score by 0.4% and IoU by 0.5%. Finally, we see in bold, that
EffUnet-B7 model achieves the best performance, improving F1-score by 3.3% compared to
the next best examined model EffUNet-B3. In Figure 5 we see the qualitative results from the
test dataset, where on the left column of each 4x3 image grid, there is the input image, the
middle column is the ground truth segmentation mask, denoted as ‘GT’ and the right column is
the mask predicted by the model. On the left image Figure 5a, we see cases where the model
has predicted accurately the defective region with dice coefficient greater than 0.7, which cor-
responds to high overlap between the actual defect and the prediction. On the right, in Figure
5b, we see cases where the model was not able to predict the defects.

Image GT Prediction

(a)

Image GT Prediction

(b)

Figure 5: Qualitative results showing indicative accurate (a) and inaccurate(b) predictions.

5 CONCLUSIONS AND FUTURE WORK

In this work, we examined a system that has the potential to automate surface inspection
in metallic surfaces. The proposed system uses machine vision sensors and an illumination
system and is validated in a use case of inspection in sink manufacturing. Firstly, we used the
system to capture multiple images from sink samples and created a dataset with various surface
defects. We examined UNet variants in their ability to localize precisely the defective regions.
Finally, we investigated the impact of different loss functions on the models’ performance. We
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concluded that EfficientNet-B7 provided the best performance in terms of F1-score and IoU,
using a weighted combination of binary cross entropy and dice loss.
The final results indicate that further improvements should be examined in terms of both DL
methods and image quality. In future work, we will examine DL methods to automatically
control the effect of illumination in the metallic surfaces and alleviate image quality problems
derived from specularity. Another future step, is to enhance the dataset with more images from
the production and examine the capability of DL methods to classify the defective regions based
on the separate defect categories.
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