
HAND GESTURE RECOGNITION USING RECURRENT NEURAL
NETWORKS AND SYNTHETIC DATA GENERATION

F. SABBARESE*, L. MAGLIULO*, P. CARRATU`*, M. ROMANO†

* Youbiquo srl
Via de Balzico 50,

84013 Cava de’ Tirreni, Italy
e-mail: info@youbiquo.eu, www.youbiquo.eu

† Università degli Studi Internazionali di Roma, Italy
Via Cristoforo Colombo, 200

00147 Roma, Italy
email: marco.romano@unint.eu, www.unint.eu

Abstract Interest in Extended Reality (XR) technologies has grown in recent years. Companies
and researchers are focusing on the fields of applications and improving user interaction, with
a particular focus on meta-user interface design. In this field, applications range from home
automation to professional fields like surgery and manufacturing. Interaction can take place
through various modalities, such as voice, touch, and hand gestures. Hand-gestural interaction
has become more relevant in recent years, particularly due to the need for touchless interaction
due to the COVID-19 pandemic. It is considered a natural interaction and allows users to feel
present in the digital world through "direct manipulation". Recognizing hand gestures in real-
time from video streams is difficult because it's hard to know when a gesture starts and ends.
Scaling up recognition performance and the possibility of encountering unknown gestures also
pose challenges. These challenges can impact the design of gestural interactions, which is
closely connected to the effort needed for making XR systems recognize gestures and their
precision, leading to a poor user experience. In this paper, we propose a real-time on-device
Hand Gesture Recognition system that can be used in XR applications. It can handle static and
dynamic gestures, with one or two hands, also considering egocentric perspective, making it
usable with various devices, from expensive Smart Glasses to more affordable smartphones and
laptops. The system uses well-known datasets, such as EgoGesture and Jester, and splits the
gesture recognition task into two sub-tasks: identifying the hand skeleton of a human from a
single RGB camera through Mediapipe Hands and then recognizing gestures using the detected
hand skeleton. To extend the available datasets, we propose a procedure for generating large
synthetic video datasets for hand gestures, as well as behavioural trees for generating variations
of the acquired gestures. This approach saves time and effort spent on recording and annotating
thousands of real videos, allowing greater flexibility in gesture design and envisioning XR
applications involving intuitive and richer interactions, increasing user experience.
Key words: Hand gestures, Extended Reality, RNN, Synthetic data, Touchless interaction.

INTRODUCTION
The evolution of smart environments has significantly changed our interactions with the

1279

X ECCOMAS Thematic Conference on Smart Structures and Materials
SMART 2023

D.A. Saravanos, A. Benjeddou, N. Chrysochoidis and T. Theodosiou (Eds)

Available online at www.eccomasproceedia.org
Eccomas Proceedia SMART (2023) 1279-1290

© 2023 The Authors. Published by Eccomas Proceedia.
Peer-review under responsibility of the organizing committee of SMART 2023.
doi: 10.7712/150123.9875.445104

surrounding environment through IoT services [1]. The design of the meta-user interface, which
encompasses the interaction between humans and the environment, has become a critical
research field in XR technologies, such as AR, VR, and MR. These technologies have
promising applications in various fields such as surgery, manufacturing, and demotics, and
hand-gestural interaction is one of the most promising interaction modalities for interacting
with the digital world naturally.

Several hand gesture-based systems have been developed to control virtual objects and
perform tasks [2]. This is particularly true in the fashion retail industry, where AR technology
is at the forefront of the usage of fitting rooms and magic mirrors [3]. Hand gestures are
considered the optimal choice to enhance the user experience and overcome issues related to
the current sanitary situation. This is because users can interact with the digital world naturally
and feel present through "direct manipulation" [2]. Additionally, hand gestures are critical in
enabling individuals with visual impairments to access and interact with digital products [4].

The complexity and variability of human hand movements pose challenges in developing
hand gesture recognition systems. In real-world scenarios, gestures are often performed
continuously, making it difficult to determine when a gesture starts and ends. The diversity of
hand shapes and movements makes it challenging to create a comprehensive dataset covering
all possible hand gestures, impacting the design of gestural interactions, the recognition
precision and user experience. Researchers have proposed various approaches for hand gestures
recognition often based on machine learning or deep learning algorithms. These algorithms
often require a large amount of labelled data to achieve good performances, which can be a
limiting factor in many applications.

In this paper, we propose a real-time Hand Gesture Recognition system for XR applications
that can recognize static and dynamic gestures from one or two hands, also considering
egocentric perspective, usable in "frugal" devices such as smartphones and laptops with RGB
cameras. The system improves upon existing ones by splitting the task into two sub-tasks,
identifying hand skeletons with Mediapipe Hands and recognizing gestures from those
skeletons using well-known datasets such as EgoGesture and Jester. Additionally, a procedure
for generating synthetic video datasets for hand gestures is proposed, reducing the time and
effort required to record and annotate real videos. The proposed method has been tested within
the HandyTrack project, experiment 1107 of the FF4EuroHPC programme, a European
initiative that helps facilitate access to all high-performance computing-related technologies for
SMEs and thus increases the innovation potential of European industry.

The remainder of the paper is structured as follows. In the next section, we provide an
overview of the literature on hand gesture recognition and the involved challenges. In the third
section, we describe the proposed hand gesture recognition system and its various components.
We then evaluate the proposed system performances both offline and online and we present an
online benchmark procedure to assess the system's recognition accuracy. Finally, we conclude
the article by summarizing our contributions and discussing future research directions in this
area.

RELATED WORKS
In recent years, the growing use of deep learning has led to the use of Convolutional Neural

Networks (CNN) for hand gesture recognition feature extraction. 2D-CNNs are limited in their

1280

ability to extract only spatial information. To handle temporal information, 3D-CNNs or
Recurrent Neural Networks (RNN), particularly Long-Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU), can be used, which are capable of handling even long-term temporal
dependencies. In [5], the responses of a 3D-CNN used on short video clips are averaged. In [6],
LSTMs are used to handle the gesture recognition problem. A system based on the combination
of CNNs and LSTMs is presented in [7], starting from a Leap Motion Controller. Instead,
researchers at NVIDIA in [8] experimented with a multimodal system extending the concept of
early detection in this context. The study [9] introduces a large-scale dataset and a challenge to
which many researchers have contributed by producing many approaches to tackle the problem
of gesture recognition starting from RGB images, including the one presented by the authors of
the study. In other studies, [10], the problem of on-air writing is addressed using depth
information and finger trajectories. Quantized depth is used in [11] to create high contrast
between different key regions of the hands. The literature is also rich in skeleton-based
approaches. In [12], authors proposed a spatio-temporal graph convolutional network (ST-
GCN) for gesture recognition using skeletons.[13] utilizes a skeleton-based approach that
combines self-attention mechanism. [14] addresses gesture recognition from 3D hand skeleton
sequences using 3D-CNNs and LSTMs. An approach based on point cloud sequences is
presented in [15], where a PointLSTM architecture is used to capture long-term spatial
correlations, propagating information from the past to the future.

PROPOSED METHOD
To use the solution across a wide range of devices, the algorithm must run continuously, and

consequently, it must be lightweight and energy efficient. While many solutions in the literature
are based on complex and heavy architectures, our approach involves decomposing the problem
into two simple tasks: i) hand tracking over time, identifying landmarks; ii) gesture recognition
based on landmarks. The advantage is the ability to leverage not only the predicted gestures,
but also the continuous tracking of the hands. In this section, we detail our system components
and analyse the algorithm training procedure and datasets used.

Hand Tracking
Real-time and robust hand tracking is a challenging task in computer vision due to self-

occlusion and lack high-contrast patterns. Most existing approaches rely on powerful
computing environments for inference. Instead, we need a solution that can achieve real-time
performance even on lightweight devices. To address this challenge, a ML-based solution such
as Mediapipe Hands [16] is used to infer hand landmarks from a single frame or video sequence.
The solution consists of a pipeline of algorithms: i) a Palm Detector Model that operates on the
input images to detect a hand bounding box; ii) a Hands Landmark Model that operates on the
region defined by the Palm Detector, to predict 21 3D landmarks (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in screen space or
world/metric space for each hand and a float scalar representing the handedness probability of
the hand.

For the screen-space landmarks, the 𝑥𝑥 and 𝑦𝑦 are estimated with respect to the image plane
and are normalized in range [0.0, 1.0] according to the image size. The 𝑧𝑧 coordinate represents
the landmark depth with respect to the wrist landmark. A positive value indicates that the

1281

landmark is located closer to the acquisition device, while a negative value indicates the
opposite. Instead, for world/metric landmarks the coordinates are in meters with the origin at
the hand’s approximative geometric centre.

To use this solution, several configurations are required, including specifying whether to
work with images or video sequences, the maximum number of detectable hands 𝑘𝑘, the
complexity of the model (lite or full), and the minimum detection threshold 𝑡𝑡ℎ𝑑𝑑 and tracking
confidence 𝑡𝑡ℎ𝑡𝑡, which indicate respectively, when a hand detection or tracking is considered
successful. These are hyperparameters in the design process.

Gesture Recognition
In this section, we formalize the approach followed for Gesture Recognition, analysing the

procedure for determining the input to the model, its architecture and training.
Model Input

Dynamic gestures are executed over time, and therefore, there are 𝑛𝑛 frames over which the
gestures are performed. If the Hand Tracking module is applied to each frame for every time
instant 𝑡𝑡, a series of landmarks is obtained. In our approach, we set 𝑚𝑚 as the number of time
instances on which a gesture can be performed, resulting in a temporal window where 𝑚𝑚 <=
 𝑛𝑛. By fixing the length of the temporal window, once 𝑚𝑚 instances of the gesture are captured,
the least recent ones are discarded, ensuring that there are always 𝑚𝑚 instances of the gesture
within the window. This allows for multiple samples to be extracted from the same performed
gesture and used as input to the model, as depicted in Figure 1.

Figure 1 - The proposed architecture for Hand tracking and Gesture Recognition.

We check handedness score against a threshold 𝑡𝑡ℎℎ and label the landmarks accordingly,
ensuring that the input to the model is ordered based on handedness at each instant of the

1282

gesture. For gestures involving both hands, we choose to provide the model with the landmarks
of the left hand first. If 𝑡𝑡ℎℎ is not exceeded or the landmarks are not detected by the Hand
Tracking module at a particular instant, the input to the model is zero-filled to indicate the
absence of that hand. Only when the landmarks of at least one hand are available, the input to
the model at that instant is filled. Both 𝑡𝑡ℎℎ and 𝑚𝑚 are hyperparameters of the system along
with the number of hands.
Model Architecture

For Gesture Recognition, we propose a RNN illustrated in Figure 1. The architecture
comprises two layers of either LSTM [17] or GRU [18] and a Fully Connected output layer
with a Softmax activation to predict gestures probabilities. We found that adding additional
layers or Bidirectional mode for recurrent layers made the model prone to overfitting or not
lead to substantial increases in the evaluated metrics despite the added complexity.

Below we formalize the operations carried out by our model. We define the input to the
model at time 𝑡𝑡 as 𝐶𝐶𝑡𝑡 ∈ ℜ𝑚𝑚 𝑥𝑥 𝑘𝑘 𝑥𝑥 𝑙𝑙 𝑥𝑥 𝑑𝑑, with 𝑚𝑚 > 1 time steps, 𝑘𝑘 = 1,2 if the gestures are
performed respectively with one hand or two hands, with 𝑙𝑙 = 21 landmarks per hand, each with
𝑑𝑑 = 2,3 dimensions (i.e., considering only 𝑥𝑥 and 𝑦𝑦 or also𝑧𝑧). The first recurrent layer is
configured to output a sequence, i.e. an output for each input time step, while the second to
return the last output in the output sequence. Thus, starting from the input 𝐶𝐶𝑡𝑡 the two stacked
recurrent layers compute the output vector ℎ𝑡𝑡 ∈ ℜ𝑟𝑟 as

ℎ𝑡𝑡 = 𝑇𝑇�𝑅𝑅(𝐶𝐶𝑡𝑡)� (1)

with 𝑅𝑅: ℜ𝑚𝑚 𝑥𝑥 𝑘𝑘 𝑥𝑥 𝑙𝑙 𝑥𝑥 𝑑𝑑 → ℜ𝑟𝑟, which summarizes the operations performed by the recurrent
layers, 𝑇𝑇 the hyperbolic tangent activation function for which 𝑇𝑇:ℜ𝑟𝑟 → ℜ𝑟𝑟 and 𝑟𝑟 that represents
the number of recurrent units. Finally, the output and softmax layers transform ℎ𝑡𝑡 into class
probabilities 𝑠𝑠𝑡𝑡 of 𝑤𝑤 classes:

𝑠𝑠𝑡𝑡 = 𝑆𝑆(𝑊𝑊𝑠𝑠ℎ𝑡𝑡 + 𝑏𝑏) (2)

with 𝑊𝑊𝑠𝑠 ∈ ℜ𝑤𝑤 𝑥𝑥 𝑟𝑟 representing the output weights, bias 𝑏𝑏 and the Softmax function 𝑆𝑆:ℜ𝑤𝑤 →
ℜ[0,1]
𝑤𝑤 , where [𝑆𝑆(𝑥𝑥)]𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑘𝑘
𝑘𝑘

 for each class in 𝐼𝐼.

Inference
Since 𝑚𝑚 <= 𝑛𝑛, from one video sequence of a gesture we can determine multiple inputs to

the model. This implies that 𝑝𝑝 predictions of the same gesture can be obtained, with 𝑝𝑝 < 𝑛𝑛 −
𝑚𝑚, since the Hand Tracking module may not determine landmarks in some frame of the video
sequence. To output a gesture, we first select from the set of classes 𝐼𝐼 the most probable class
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 predicted by the Softmax output of the model as

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  = arg max
𝑖𝑖∈ 𝐼𝐼 

(𝑠𝑠𝑡𝑡 ) (3)

then we compare the probability of the selected class against a confidence threshold 𝑡𝑡ℎ𝑐𝑐 and
output the null gesture if the threshold is not exceeded. The last 𝑞𝑞 predictions are stored in 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,
with 𝑞𝑞 <= 𝑝𝑝. We output the class 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 if this is the most present inside 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, that is

𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖∈ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓(𝑖𝑖)) (4)

with 𝑓𝑓(𝑖𝑖) = ∑
𝑦𝑦 ∈ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦 == 𝑖𝑖).

1283

For real-time prediction, the input to the system is a continuous video stream, and the Hand
Tracking module is always enabled to detect hand landmarks. Gesture recognition is activated
only when a series of 𝑚𝑚 landmarks is detected, and therefore, only in these cases a gesture can
be predicted. In all other cases, the null gesture is added among the last 𝑞𝑞 predictions, so that it
is output as 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜.

The hyperparameters 𝑞𝑞 and 𝑡𝑡ℎ𝑐𝑐 are optimized during the model deployment phase to ensure
the robustness of gesture recognition.
Training Details

To train the model we use Categorical Cross Entropy [19] as loss function and either the
Adam [20] or RMSProp [21] optimizer. In our experiments, we observed that the RMSProp
optimizer allowed for faster convergence and lower loss values with a batch size of 256. The
starting learning rate is tuned during experiments and adjusted using ReduceLROnPlateau, a
scheduling technique that decreases the learning rate when validation set loss stops improving
for longer than the patience number allows. To prevent overfitting, we employed regularization
techniques such as adding Dropout [22] after recurrent layers with a rate of 50%, EarlyStopping
[23] to training when no improvement is observed on the validation set loss and shuffling the
data before each training epoch. We evaluate regularization with 𝐿𝐿1 and 𝐿𝐿2 norms, as well as
their combination, but did not observe a positive impact. To address class imbalance, we
consider sample weights, computing weights to use alongside the loss function based on the
number of samples for each class in the training set. However, this technique did not yield
substantial benefits. No pre-training is used to initialize model weights. Glorot/Xavier Uniform
[24] initialization is used for input weights of recurrent layers and the output layer, while
Orthogonal one is used for recurrent states.
Knowledge Distillation and Pruning

To reduce the size of the model, preserving its structure, we use the Knowledge Distillation
[25]. This enables us to transfer the knowledge from a more complex model to a lighter one.
To achieve this, we use the Kullback-Leibler Divergence to minimize the distance between the
output distribution of the student model and of the teacher model. We employ a factor denoted
as 𝛼𝛼 to balance the distillation loss and the one derived from the training data. 𝛼𝛼 is set to values
in [0.1, 0.3], indicating low dependence on the data.

To further improve latency, we applied weight pruning by gradually setting the weights to
zero based on their magnitude to obtain model sparsity. This method involves an additional
training phase during where the model is trained to achieve the desired sparsity over a certain
number of epochs.
Implementation Details

Although other input modes are available for some of the dataset, in our work we use only
the RGB images in input to the system.

The model is trained in two different environments: i) an ordinary laptop configured with an
Intel Core i7-1065G7 CPU and 16 GB of RAM, without a GPU; ii) the High-Performance
Computing (HPC) Marconi100 by CINECA, configured with an IBM POWER9 AC922, 128
GB of RAM and a NVIDIA Volta V100 GPU with 16 GB of VRAM. In the laptop case, we
use the TensorFlow and Keras frameworks, along with Horovod to distribute the training over
the HPC. To deploy models on low-computational-capability devices, we perform a conversion

1284

to TensorFlow Lite format and apply Dynamic Range post-training quantization with a 8 −
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 precision, to reduce the model size and improve latency. After quantization and
conversion, the model is re-evaluated on the test data, typically showing a reduced impact on
its predictive capabilities in most cases.

Dataset
Several datasets of dynamic gestures are available, varying in terms of gesture complexity,

labels, actors, acquisition sensors, and perspective (egocentric or third person). However, as
highlighted in [9], large-scale datasets from an egocentric perspective are limited. Our work is
evaluated on three different datasets with both perspectives: Jester [9], EgoGesture [26] and
Synthetic. The datasets are split into 3 parts: i) training set for model fitting; ii) validation set
for unbiased model evaluation and hyperparameter tuning during the training; iii) test set for
final unbiased evaluation of the trained model. Details of the datasets are provided in the
following sections.
Jester

This is a real-world large-scale dataset. It includes 148,092 RGB clips with a third-person
perspective, a duration of 3 seconds at 12 frames per seconds with the height fixed at 100 pixels
and a variable width. Each clip contains a gesture annotation from a set of 27 gestures. The
dataset consists of 1, 376 actors performing the gestures in their home environment. The
average number of clips for each person is 43. We adopt the 80: 10: 10 split as in [9].
EgoGesture

The dataset comprises 24, 161 samples acquired from the top of the subject's head in an
egocentric perspective using a RealSense SR300 sensor in RGB and depth modes with a
resolution of 640 x 480 and 30 frames per seconds. It includes 83 classes of gestures performed
by 50 distinct subjects in 6 diverse scenes, with the aim to cover most kinds of manipulation
and communication operations on wearable devices. As in [26], the sample split is 60: 20: 20
and the division is random and based on subjects.
Synthetic

The Synthetic Dataset is generated through a flexible application developed at Youbiquo.
The application can reproduce not only the same gestures but also variations of them through
behavioural trees. The landmarks are mapped onto 3D hand models, rendered with different
backgrounds, variations of position, distance, and viewpoint rotations. The rendered frames can
be exported in different modes: RGB, depth, silhouette, json (which contains the position and
rotation of each joint of the hands). The sensor used in the acquisition phase is a RealSense
D455 with a resolution of 640 𝑥𝑥 480, at 60 frames per second. The same resolution and frames
per second are used for the generation phase. Ten acquisitions are made for each gesture,
varying the position in space and handedness, with the option to configure the number of
reproductions per acquisition. Four gestures from the EgoGesture dataset are selected for the
generated dataset in this experiment, with a reproduction factor of 50 . A random split of
70: 20: 10 is applied for each label.

1285

Figure 2 – 6DPSOH�RI�JHVWXUHV�IURP�-HVWHU��(JR�*HVWXUH��6\QWKHWLF�GDWDVHW.

EXPERIMENTAL RESULTS
:H�HYDOXDWH�RXU�V\VWHP
V�SHUIRUPDQFH�LQ�ERWK�RIIOLQH�DQG�RQOLQH�VFHQDULRV.�)RU�WKH�ODWWHU��

ZH� LQWURGXFH�DQ�RQOLQH�EHQFKPDUN�SURFHGXUH� WR�DVVHVV� WKH� V\VWHP
V� UHFRJQLWLRQ�DFFXUDF\� LQ�
UHDO�ZRUOG�FRQWH[WV.

Of flin e Evaluation
7KH�RIIOLQH�HYDOXDWLRQ�RI�WKH�V\VWHP�LV�SHUIRUPHG�RQ�WKH�WHVW�VHW.�,Q�7DEOH�1��ZH�FRPSDUH�WKH�

UHVXOWV�REWDLQHG� IURP�RXU�PRGHOV�ZLWK� WKRVH�REWDLQHG�E\�VRPH�RI� WKH�59 SDUWLFLSDQWV� LQ� WKH�
-HVWHU�&KDOOHQJH�>9@��ZKHUH�DFFXUDF\�YDOXHV�UDQJH�IURP�68%�WR�97%.�)RU�DOO�H[SHULPHQWV��𝑑𝑑 LV�
IL[HG�DW�3.�6RPH�JHVWXUHV�FDQ�EH�UHFRJQL]HG�HYHQ�LI�WKH\�DUH�PDGH�ZLWK�WZR�KDQGV�DW�WKH�VDPH�
WLPH.� 7KHUHIRUH�� ݇� FRXOG� EH� IL[HG� DW� 2.:H� DOVR� H[SHULPHQWHG� ZLWK� D� VXEVHW� RI� WKH� FODVVHV�
DYDLODEOH�LQ�WKH�GDWDVHW.ݓ��LV�VHW�WR�WKH�QXPEHU�RI�FODVVHV�XVHG.

Table 1: $FFXUDF\�RI�-HVWHU�&KDOOHQJH�PRGHOV�YV�PRGHOV�RI�WKH�H[SHULPHQW.

Model Acc

5)((1��20�&URSV 97.06%

�'�5HV1HW�101 85.99%

2XUݓ�� = 27��𝑝𝑝 = 16��݇ = 𝑑𝑑݄ݐ��2 = 𝑡𝑡݄ݐ��0.72 = ℎ݄ݐ��0.72 = 0.85��
ݏ𝑟𝑟݁ݕ݈ܽ = ݏݐ��𝑢𝑢𝐼𝐼𝑖𝑖ܯ𝑆𝑆ܶܮ = 16��݈𝑟𝑟 = 0.001

85.63%

2XUݓ�� = 27��𝑝𝑝 = 16��݇ = 𝑑𝑑݄ݐ��2 = 𝑡𝑡݄ݐ��0.72 = ℎ݄ݐ��0.72 = 0.85��
ݏ𝑟𝑟݁ݕ݈ܽ = ݏݐ��𝑢𝑢𝐼𝐼𝑖𝑖ܯ𝑆𝑆ܶܮ = 64��݈𝑟𝑟 = 0.0001

87.84%

2XUݓ�� = 27��𝑝𝑝 = 16��݇ = 𝑑𝑑݄ݐ��2 = 𝑡𝑡݄ݐ��0.72 = ℎ݄ݐ��0.72 = 0.85��
ݏ𝑟𝑟݁ݕ݈ܽ = 𝐺𝐺𝑅𝑅ܷ��𝑢𝑢𝐼𝐼𝑖𝑖ݏݐ = 64��݈𝑟𝑟 = 0.0001

88.65%

2XUݓ�� = 15��𝑝𝑝 = 21��݇ = 𝑑𝑑݄ݐ��2 = 𝑡𝑡݄ݐ��0.70 = ℎ݄ݐ��0.65 = 0.85��
ݏ𝑟𝑟݁ݕ݈ܽ = ݏݐ��𝑢𝑢𝐼𝐼𝑖𝑖ܯ𝑆𝑆ܶܮ = 16��݈𝑟𝑟 = 0.0001

92.78%

2XUݓ�� = 10��𝑝𝑝 = 16��݇ = 𝑑𝑑݄ݐ��2 = 𝑡𝑡݄ݐ��0.80 = ℎ݄ݐ��0.75 = 0.90��
ݏ𝑟𝑟݁ݕ݈ܽ = ݏݐ��𝑢𝑢𝐼𝐼𝑖𝑖ܯ𝑆𝑆ܶܮ = 32��݈𝑟𝑟 = 0.0001

93.00%

1286

In the case of EgoGesture dataset, we compare, in Table 2, our models and those in [26].
Specifically, we consider only the cross-subject case, since the test set and the training set are
disjoint and using only RGB frames.

Table 2: Accuracy of EgoGesture models vs models of the experiment.

Model Acc

VGG16 fc6 62.50%

C3D fc6, 16 frames 86.40%

Our, 𝑤𝑤 = 83, 𝑚𝑚 = 16, 𝑘𝑘 = 1, 𝑡𝑡ℎ𝑑𝑑 = 0.60, 𝑡𝑡ℎ𝑡𝑡 = 0.60, 𝑡𝑡ℎℎ = 0.71,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 64, 𝑙𝑙𝑙𝑙 = 0.0005

71.31%

Our, 𝑤𝑤 = 83, 𝑚𝑚 = 16, 𝑘𝑘 = 1, 𝑡𝑡ℎ𝑑𝑑 = 0.60, 𝑡𝑡ℎ𝑡𝑡 = 0.60, 𝑡𝑡ℎℎ = 0.71,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 128, 𝑙𝑙𝑙𝑙 = 0.0005

72.90%

Our, 𝑤𝑤 = 18, 𝑚𝑚 = 11, 𝑘𝑘 = 1, 𝑡𝑡ℎ𝑑𝑑 = 0.65, 𝑡𝑡ℎ𝑡𝑡 = 0.65, 𝑡𝑡ℎℎ = 0.75,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 22, 𝑙𝑙𝑙𝑙 = 0.0005

90.92%

We present a subset of the experiments conducted on both datasets, achieving results
comparable to the literature, but with a lighter architecture. Reducing the number of classes in
the training set can increase accuracy, while the number of units in the layers needs to be
increased when the dataset becomes more complex. Time windows ranging from 15  to 25  are
tested on the Jester dataset, while values between 10 and 18 are used for the EgoGesture and
Synthetic datasets. Higher values for 𝑡𝑡ℎ𝑑𝑑, 𝑡𝑡ℎ𝑡𝑡 and 𝑡𝑡ℎℎ can improve accuracy, but for the more
complex EgoGesture, these values must be kept low. In most cases, switching from LSTM to
GRU layers results in a slight performance variation. By applying Knowledge Distillation and
then Pruning to the same trained models, the result is a smaller model, but approximately the
same precision.

We compare training times and accuracy for the Synthetic dataset on a laptop and
Marconi100 HPC to highlight the need for increased computing power when dealing with
complex models and large batch sizes, especially considering the possibility of generating a
potentially unlimited dataset through our procedure. The Table 3 shows the results.
Table 3: Accuracy and training times for the same model trained on the synthetic data and different computers.

Model Acc Time

Laptop, 𝑤𝑤 = 4, 𝑚𝑚 = 10, 𝑘𝑘 = 1, 𝑡𝑡ℎ𝑑𝑑 = 0.70, 𝑡𝑡ℎ𝑡𝑡 = 0.70, 𝑡𝑡ℎℎ = 0.70,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 128, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 512, 𝑙𝑙𝑙𝑙 = 0.00005

95.00% 2ℎ, 35𝑚𝑚, 14𝑠𝑠

HPC, 𝑤𝑤 = 4, 𝑚𝑚 = 10, 𝑘𝑘 = 1, 𝑡𝑡ℎ𝑑𝑑 = 0.70, 𝑡𝑡ℎ𝑡𝑡 = 0.70, 𝑡𝑡ℎℎ = 0.70,
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 128, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 512, 𝑙𝑙𝑙𝑙 = 0.00005

95.70% 0ℎ, 30𝑚𝑚, 56𝑠𝑠

1287

Online Evaluation
Benchmark Evaluation

The benchmark involves evaluating the accuracy of 10 inferences for a set of 5 gestures
selected from the Jester dataset and performed 5 times with both the hands. The experiments
are conducted on two different devices: the same laptop used for training and the Smartglass
Leonardo supplied by Youbiquo. Measurements are taken for 3 different models trained on the
same dataset (𝑤𝑤 = 10, 𝑚𝑚 = 10, 𝑘𝑘 = 2, 𝑑𝑑 = 3, 𝑡𝑡ℎ𝑑𝑑 = 0.70, 𝑡𝑡ℎ𝑡𝑡 = 0.65, 𝑡𝑡ℎℎ = 0.90), all with
32 units in hidden layers 256 as batch size, 0.0001 as learning rate and different initialization.
The offline accuracy for the first model is approximately 93%, around 91% for the second, and
92% for the third. Furthermore, the confidence threshold for gesture prediction 𝑡𝑡ℎ𝑐𝑐 and the size
of the set of last 𝑞𝑞 predictions are set at 0.80 and 15, respectively. The Table 4 shows the
measurements in terms of accuracy on the presented benchmark.

Table 4: Accuracy of three different models on two different devices.

Device Model 1 - LSTM Model 2 - GRU Model 3 - LSTM Avg – Std

Ordinary Laptop 90% 94% 84% 89.33 ± 4.16%

Leonardo 94% 88% 96% 92.66 ± 5.03%

Fps Evaluation
Below we provide an estimation of the frames per second (fps) at which the system can run

on 3 different devices: the laptop used for training, the SmartGlass Leonardo provided by
Youbiquo and the OnePlus 9 Pro 5G smartphone. Results are reported under two different
conditions, when only Mediapipe Hands is running and when gesture recognition implemented
using Model 1 - LSTM is overlaid. The Table 5 reports all obtained results.

Table 5: FPS of a trained model running on different devices.

Device Mediapipe Hands Mediapipe Hands + Gesture Recognition

Ordinary Laptop 24.13 ± 2.46 21.32 ± 2.57

Leonardo 21.01 ± 2.85 20.06 ± 2.35

OnePlus 9 Pro 5G 30.13 ± 3.38 29.63 ± 4.07

CONCLUSIONS
In this paper, we present our solution for hand tracking and gesture recognition that can be

seamlessly integrated into XR systems. One of the key strengths of our approach is its
flexibility. The ability to generate datasets and extend existing ones allows for further
improvement of the solution and enables its deployment in contexts where a dedicated set of
gestures may not yet be available. Furthermore, the potential to integrate other input modalities,

1288

such as depth images, serves as a foundation for future studies, expanding the possibilities of
our solution.

REFERENCES
[1] J. Coutaz. Meta-User Interfaces for Ambient Spaces. In International Workshop on Task

Models and Diagrams for Users Interface Design; Springer: Singapore, 2007; pp. 1–15.
[2] Battistoni, P., Di Gregorio, M., Romano, M., Sebillo, M., Vitiello, G., & Brancaccio, A.

(2022). Interaction design patterns for augmented reality fitting rooms. Sensors, 22(3), 982.
[3] Javornik, A.; Rogers, Y.; Moutinho, A.M.; Freeman, R. Revealing the shopper experience

of using a ‘magic mirror’ augmented reality make-up application. In Proceedings of the
ACM Conference on Designing Interactive Systems, Brisbane, Australia, 4–8 June 2016;
Volume 2016, pp. 871–882.

[4] Romano, M., Bellucci, A., & Aedo, I. (2015). Understanding touch and motion gestures for
blind people on mobile devices. In Human-Computer Interaction–INTERACT 2015: 15th
IFIP TC 13 International Conference, Bamberg, Germany, September 14-18, 2015,
Proceedings, Part I 15 (pp. 38-46). Springer International Publishing.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri; Learning Spatiotemporal Features
with 3D Convolutional Networks; In Proceedings of the 2015 IEEE International
Conference on Computer Vision; 2015; pp. 4489-4497.

[6] Girdhar R., Ramanan D., Gupta A., Sivic J., Russell B. Actionvlad: Learning spatio-
temporal aggregation for action classification . In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition . 2017 . pp. 971–980.

[7] Wang L., Xiong Y., Wang Z., Qiao Y., Lin D., Tang X., Van Gool L. Temporal segment
networks . Towards good practices for deep action recognition . Proceedings of the
European Conference on Computer Vision . 2016 . pp. 20–36

[8] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, J. Kautz . Online Detection and
Classification of Dynamic Hand Gestures with Recurrent 3D Convolutional Neural
Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition. 2016. pp. 4207-4215.

[9] J. Materzynska, G. Berger, I. Bax, R. Memisevic. The jester dataset: A large-scale video
dataset of human gestures. In Proceedings of the 2019 IEEE/CVF International Conference
on Computer Vision, pp. 2874-2882.

[10] Mahmud, H., Islam, R. & Hasan, M.K. On-air English Capital Alphabet (ECA)
recognition using depth information. The Visual Computer 38, 1015–1025 (2022).

[11] H. Mahmud, M. M. Morshed, M. Hasan. A deep-learning–based multimodal depth-
aware dynamic hand gesture recognition system. Computer Vision and Pattern Recognition.
https://doi.org/10.48550/arXiv.2107.02543

[12] S.Yan, Y. Xiong, D. Lin. Spatial temporal graph convolutional networks for skeleton-
based action recognition. Thirty-second AAAI conference on artificial intelligence (2018)

1289

[13] Y. Chen, L. Zhao, X. Peng, J. Yuan, D.N. Metaxas (2020). Construct dynamic graphs
for hand gesture recognition via spatial-temporal attention. Paper presented at 30th British
Machine Vision Conference, BMVC 2019, Cardiff, United Kingdom.

[14] J.C. Núñez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, J. F. Vélez. Convolutional
Neural Networks and Long Short-Term Memory for skeleton-based human activity and
hand gesture recognition. Pattern Recognition (Volume 76). April 2018. pp 80-94

[15] Y. Min, Y. Zhang, X. Chai and X. Chen. An Efficient PointLSTM for Point Clouds
Based Gesture Recognition. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020. pp. 5760-5769.

[16] F. Zhang. MediaPipe Hands: On-device Real-time Hand Tracking. arXiv e-prints, 2020.
doi:10.48550/arXiv.2006.10214.

[17] S. Hochreiter , J. Schmidhuber. LONG SHORT-TERM MEMORY. Neural
Computation 9(8):1735-1780, 1997.

[18] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y.
Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. Doi:10.48550/arXiv.1406.1078

[19] S. Mannor, D. Peleg, R. Rubinstein. The cross entropy method for classification. In
Proceedings of the 22nd international conference on Machine learning. (2005, August). pp.
561-568.

[20] D.P. Kingma, J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980. (2014).

[21] T. Tieleman, G. Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report, 2012.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1). 2014. Pp. 1929-1958.

[23] L. Prechelt. Early Stopping — But When?. In: G. Montavon, G.B. Orr, K.R. Müller,
(eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700.
(2012). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_5

[24] X. Glorot, Y. Bengio, (2010, March). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference
Proceedings.

[25] G. Hinton, O. Vinyals, J. Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

[26] Y. Zhang, C. Cao, J. Cheng, H.Lu. Egogesture: a new dataset and benchmark for
egocentric hand gesture recognition. IEEE Transactions on Multimedia, 20(5). 2018. 1038-
1050.

1290

