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Abstract. Machine Learning and Recommendation Systems (RSs) have had a significant 
impact on the manufacturing industry, heralding in the smart manufacturing era of Industry 4.0. 
An RS is a class of machine learning that recommends items from a knowledge base utilizing 
data filtering and analysis. RSs are designed to assist employees in making decisions, by 
improving their capacity to recognize the optimal option from a variety of alternatives. This 
work describes a Deep Neural Network model, inspired by the collaborative filtering and 
factorization matrix approaches, trained using an elevator manufacturing company's dataset of 
the elevator hydraulic press calibration unit test over a two-year period. The proposed model 
aims to provide the company's operators with predictions about target parameters during the 
hydraulic press calibration process (i.e., speed, pressure) in order not to exceed a maximum 
level of noise. It predicts speed and pressure with a Mean Squared Error of 0,0015 and 0,0078, 
respectively. Furthermore, Pearson Association Coefficients were calculated for all validation 
runs, showing that the predictions were highly associated with their actual values.  

Keywords: Recommendation System, Deep Neural Networks, Zero Defect, Smart 
Manufacturing, Industry 4.0. 
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1 INTRODUCTION 
Production of high-quality goods and products is at the centre of today’s manufacturing 

sector. Manufacturers strive to create products with zero flaws, which necessitates the 
application of comprehensive quality control procedures at every stage of the production 
process. In this context, Machine Learning (ML)-based solutions have become a potent tool for 
facilitating Zero Defect Manufacturing (ZDM). Applications called Recommendation (or 
recommender) Systems (RS), evaluate data and make suggestions to users about items from a 
knowledge base. RSs have become an essential component of smart manufacturing, thanks to 
the application of artificial intelligence (AI) techniques. RSs provide operators with useful 
guidance on how to modify the production line to reduce errors, by analyzing and reasoning 
over data that is related to recognized abnormalities and suboptimal operations in the production 
line. 

Particularly, RSs produce suggestions to users based on filtering and analysis of data [1]. As 
such, the use of AI techniques, such as computational intelligence and ML, is significantly 
pronounced in the development of RSs [2]. Hence, RSs can constitute an important feature 
towards ZDM, aiming at providing helpful information to the operators on how to timely adjust 
the production line in order to avoid defects caused by suboptimal manufacturing environment 
conditions (such as machine calibration parameters). Such systems can be trained on data 
pertaining to past actual configurations that don’t impose anomalies and known suboptimal 
operations in the production line, and realize the detection of both existing and potentially 
upcoming defects. In this way, they can calculate equipment parameters readjustments in real-
time, thus effectuating the automation needed to overcome problematic situations effectively 
and efficiently.  

RSs (and the ML field in particular) have had a huge influence on the manufacturing 
industry, making conventional manufacturing processes “smarter”, a key characteristic of the 
Industry 4.0 era [3]. In this paper, we conduct a comprehensive investigation of ML-based RSs 
to enhance shop floor operator decision-making with respect to production line calibration. Our 
aim is to gather valuable insights that can be utilized to implement just-in-time system re-
configuration techniques, and identify similar approaches. To illustrate the effectiveness of ML-
based RS, we describe a recommendation ML model developed for an elevator manufacturing 
company, which focuses on optimizing the configuration of the hydraulic press for proper 
elevator ascending and descending. The proposed model is trained, validated, and tested on a 
dataset of 7,200 valid elevator configurations, with a split of 60%-20%-20% respectively. The 
results of this study demonstrate the potential of ML-based RSs for improving quality control 
measures in the manufacturing industry. 

2 RECOMMENDATION SYSTEMS IN MANUFACTURING 
AI plays a huge role, as an up-and-coming technology in ZDM I4.0 reference architecture 

compliant solutions [4]. Hence, RSs have been used widely in smart manufacturing 
applications. Nikolakis et al. [5] proposed a two-level Collaborative Filtering RS for training a 
Production Line Operator (PLO), taking into consideration the PLO’s feedback [6]. A K-
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Nearest Neighbours algorithm extracts a list of PLO profiles similar to the target’s, as well as 
instruction sets that were ratted higehr by PLOs with similar profiles. In [7], a unique deep 
learning-based multi-criteria collaborative filtering approach is presented. This model consists 
of two parts: the first portion gathers data about individuals and products to feed into the Deep 
Neural Network (DNN) that predicts how those features will be rated on the criteria. The second 
component, a DNN trained to predict an aggregate rating, takes the aforementioned criteria 
ratings as input. 

Regarding the personalized recommendation for Manufacturing Service Composition 
(MSC), a hybrid PoNSGA-III & Clustering-based Collaborative Filtering algorithm has been 
developed [8]. By taking both the Quality of Service (QoS) goal attributes and the customer 
choice attribute into account, a multi-attribute customized recommendation is formulated as a 
search for the best MSC items for the manufacturing task chain. The proposed algorithm uses 
a rating of customer preference characteristics to provide the best options for a given client. 
Another hybrid algorithm for QoS prediction was proposed in [9]. More specifically, the 
combination of similarity-enhanced collaborative filtering and improved case-based reasoning 
in an ensemble model is used, to establish a hybrid QoS prediction framework for cloud 
manufacturing. Resource similarity models for autonomous resource filtering leverage RSC's 
decision-making process, and push the best-suited resource to the host. The interaction model 
allows self-organized, human-free manufacturing.  

On the other hand, Human-Machine collaboration is highly prominent in smart factories that 
strive to leverage the strengths of both knowledge workers and smart manufacturing 
technologies (such as AI/ML) [10], particularly in cases where the concept of automation 
adaptation [11] is, or can be, adopted. Regarding work on such human-centered manufacturing 
spaces, Li et al. [12] designed a semantic model of Manufacturing Tasks, capable of providing 
a plausible manufacturing resource recommendation framework, mainly concerning 
manufacturing resources, such as processing equipment, materials, labour force, and so on. Its 
goal is to enable production planning simulation and optimization in a digital twin shop floor. 
Similarly, in [13], a recommendation system model is proposed using Reinforcement Learning 
(RL) approaches and trust models, to improve the decision support associated with the 
execution of the digital twin based on a “what-if” simulation. A Software-Defined Control 
approach was proposed in [14], to integrate control and enterprise data so as to give a master 
controller an overview of the entire system and allow her/him to aid operations management 
solutions with global data and reconfiguration recommendations, that can be rolled out quickly 
on the shop floor. Bachinger et al. [15] concentrate on the control of predictive models used in 
smart manufacturing settings, that combine numerous heterogeneous models to generate a 
digital twin of the production process. 

Creutznacher et al. [16] introduce a conceptual planning and optimization framework that 
compares capacitative production planning adaptations to alter production volumes. The 
recommendation system for supporting simulation-based production planning selects 
appropriate variations from a data set and compares them using user- and scenario-based 
weighting. To create a self-learning system, it is sufficient to run the desired option, and then 
send the collected Key Performance Indicators (KPIs) back to the database for further analysis. 
Romeo et al. [17] suggest a data-driven design support system to aid with corporate design. ML 
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predicts machine data and metrics based on manufacturer specs. Decision/Regression Tree, 
Nearest Neighbours, and Neighbourhood Component Features Selection extract decisional 
information from heterogeneous data. Designers and experts use the estimated factors to make 
the best technological conclusion. Thanks to non-technical features (such as cost and market), 
the tool may be used to assess project feasibility, make offers, etc.  

Chen & Jin [18] suggest ranking and selecting the optimal compute pipelines for a given 
environment, structuring the topic as a recommendation problem. Their system takes into 
account similarities across computation pipelines, based on word embedding and context 
characteristics, effectively discovering the highest-ranking ones without exhaustively 
experimenting with all pipelines. 

3 METHODOLOGY 
This section presents the developed DNN architecture model, and describes the case study 

elected to validate it, provided by an elevator manufacturing company.  

3.1 Case study description 
Our selected use case was implemented with assistance from an elevator manufacturing 

company. The production of customer-tailored hydraulic lift solutions entails production 
processes that need to meet the highest of standards, to ensure safety and quality of the final 
product delivered to the customer. Therefore, quality testing is an inseparable part of every 
manufacturing step. However, as client demands and requirements vary, so does the product’s 
Bill of Materials (BoM), and therefore, test requirements and conditions, change. 

One of the most important components in elevator manufacturing is the hydraulic press unit, 
which is key for ensuring proper operation in accordance to the customer’s specifications. 
Therefore, quality testing of this unit occurs at a dedicated test lab, where operational conditions 
are simulated to identify defects. Such defects may involve faulty components in the unit’s 
build, or improper calibration, which may impact the elevator’s operation in terms of lift speed, 
vibrations, and sound. Because of the highly customised production, quality control is carried 
out manually by PLOs, which is both a time-consuming and error-prone process. 

We thus developed a RS to address the needs of hydraulic press unit calibration, in order to 
reduce the number of manual inspections needed for different configurations of the lifting 
mechanism. The system is based on a DNN architecture, utilising collaborative filtering and 
factorization matrix approaches, and is trained on a dataset provided by the manufacturer, 
capable of predicting speed and pressure calibration values for the hydraulic block valve. These 
pre-determine the velocity and acceleration of an elevator that are described by the specific 
BoM, in order for the elevator to operate efficiently, while also not exceeding the noise level 
specified by the customer. In this way, the system produces recommendations for a PLO in the 
test lab, to both recommend the operators with predictions regarding target parameters during 
the hydraulic press calibration task. Next sections describe the dataset, along with the pre-
processing carried out for training the RL agent to yield predictions for speed and pressure 
calibration values for a specific BoM of an elevator mechanism. 
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3.2 Dataset 
The dataset comprises unit test results carried out by the elevator manufacturer over a period 

of two years. It includes a time series regarding the benchmarking of hydraulic valves in terms 
of velocity (speed), oil pressure and noise for 7.200 different elevator configurations over these 
two years. Each configuration consists of the parameters summarized in Table 1.  

Table 1: Elevator configuration (Bill of Materials) 

Parameter Description 
ORDER A unique number corresponds to a specific client’s order for a specific 

elevator configuration that needs to be constructed.  
HAND PUMP The type of hand pump that is used for the calibration of the elevator. 
FLOW RATE The oil flow rate for filling up or out the hydraulic press pistons so as to 

lift up or down the elevator accordingly. 
PRESSURE SWITCH The type of pressure switch that is used as an electric latch for starting or 

stopping the oil flow from the oil tank to the hydraulic valve and vice 
versa. 

PISTON SNO A unique numeric identifier (serial number) of the hydraulic valve piston 
used for the specific configuration. 

POWER UNIT SNO A unique numeric identifier (serial number) of the power unit used for 
the specific configuration. 

TANK TYPE The type of hydraulic oil tank that is used for storing the oil for the 
specific configuration. 

BLOCK VALVE The type of block valve which is used for regulating the speed and 
pressure of the hydraulic press for the specific configuration. 

Each configuration ensembles the lifting mechanism of an elevator that is built by the 
manufacturer for a specific client’s order. This mechanism should be calibrated for operating 
in a specific spectrum of speed values, and it should not produce noise above a specific 
threshold, which depends on the legislation in each country. Testing of the elevator mechanism 
is conducted during the unit testing procedure, through which the operator can observe the 
behaviour in the lab, gauging mainly three parameters: speed, pressure, and noise. Each unit 
test provides time series data similar to those depicted in Figure 1. 

Specifically, the speed results are measured in meters per second (m/s), the pressure in bars 
and noise in decibels (dBs).  

The dataset contains valid unit test results for each of the 7.200 different configurations. For 
example, the configuration that pertains to the unit test measurements of Figure 1, should 
operate so that the mean speed is at 0,19 m/s, the average oil pressure is at 35 bars, and the 
noise produced does not exceed 70 dBs. 
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Figure 1: Example unit test results of a specific configuration 

3.3 Dataset exploration and pre-processing 

 RSs are intended to support workers in optimal decision-making, essentially augmenting 
their capability to identify the optimal choice out of a number of available options. Likewise, 
the main objective of the implemented RS is to assist the test lab PLOs during the calibration 
phase, adjusting the block valve so as to achieve the optimal values of mean speed, pressure, 
and noise. To that end, the proposed mechanism should consider the configuration parameters, 
as described in Table 1, and the target values for the aforementioned characteristics.  

As can be observed in the measurements illustrated in Figure 1, the time series for each 
characteristic (speed, pressure, and noise) follows a specific pattern, which corresponds to the 
mechanical characteristics of an elevator. In detail, regarding the speed characteristic, there is 
an acceleration phase for the elevator speed (either going up or down) during which the values 
continuously increase. Related to pressure, a ramp-up phase is observed, during which the 
pressure has high values. After this initial phase, we can observe that there is an equilibrium for 
both characteristics, fluctuating within a niche range of values, slightly higher, or lower than 
the target one. Regarding noise values, an initial fluctuation is observed, which is slightly above 
the mean values, without however exceeding the upper limit. 

Considering these observations, we proceeded with the necessary dataset pre-processing, 
before we fed it to the proposed DNN model for training, as described below. 

As per our observations, we decided that the initial phase of the unit test results should be 
trimmed both for speed and pressure. This is because our overall objective is to produce a 
dataset that will provide values near the target one, thus all the values of the initial phases are 
considered outliers. To that end, for each individual unit test, we cut off all the values included 
within the initialization phase, as well as any zero values. The remaining values pertained to 
the equilibrium phase, so they could be used to find the average speed, pressure, and noise 
values for each configuration, which would constitute the true values for our DNN model. 
However, if we averaged the remaining values of each configuration, we would considerably 
reduce the size of the dataset (i.e., to only 7 thousand rows). This would not be adequate for 
training the model. In this respect, we proceeded with the augmentation of the dataset, by 
keeping a portion of the remaining values, as described next. 

Having ensured that the data pruning procedure yielded a dataset including values only from 
the equilibrium phase of each unit test, we decided to keep a wide range of these values, rather 
than averaging them to one single value. To do so, we first proceeded to finding local maxima 
and local minima of the equilibrium phases, exploiting the fact that, in this phase, the values of 
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the data stream fluctuate. Hence, we were able to define existing plateaus and valleys. An 
example is illustrated in Figure 2. 

Figure 2: An example of the oil pressure values, at the equilibrium phase, for a configuration. The orange 
annotated segments designate the plateaus and valleys that have been identified by local maxima or minima, 

respectively. 

Having aggregated and averaging the identified plateaus and valleys for each configuration, 
we then calculated their average value, which is close to the desired target (mean) values, as 
well as their standard deviation. For the final dataset we kept only the values falling within the 
range of: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (1) 

As a last step before proceeding with the training and validation of our model, we carried 
out (min-max) normalization of the pressure oil values, succeeding this way the acceleration of 
the training process without affecting the actual distribution of these dataset features. 

4 CASE-BASED ANALYSIS & RECOMMENDATION 
Considering that the main objective of the RS is to predict target values for specific 

configurations (so that the operators can try fine-tuning the block valve without needing to 
proceed to unnecessary unit tests), we propose a DNN architecture inspired by the collaborative 
filtering and factorization matrix approaches based on DNNs, like those described in section 2. 

In traditional ML approaches, the features are manually engineered by field experts. On the 
other hand, provided that a regression task is compositional, and the dataset size is sufficient, 
DNNs have the ability to automatically learn useful features from the data. Furthermore, in 
many cases, these features outperform handcrafted ones, leading to improved classification 
accuracy. Hence, combining the characteristics of the aforementioned approaches we 
concluded to the DNN architecture illustrated in Figure 3. 
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Figure 3: The proposed ML architecture for our recommender system 

Specifically, the proposed ML architecture takes as input the configuration parameters (as 
described in Table 1), as well as the target noise value. It consists of four embedding layers, 
which are used for indexing each of the parameters that specify configuration component types 
(i.e., the HAND PUMP model; the PRESSURE SWITCH type; the TANK type; and the 
BLOCK VALVE) into fixed length vectors of defined size. As can be seen, ORDER, PISTON 
SNO and POWER UNIT SNO are not used in the proposed model, since they are unique for 
each configuration, without providing qualitative characteristics that could be considered as 
features for our model. 

The embedding layers along with the configuration’s Flow rate and Noise, which are used 
as numeric values, are then concatenated into a single layer. This layer is then sequentially 
connected to two Fully Connected Neural Network (NN) layers, each one activated by the leaky 
RELU activation function. The second Fully Connected NN layer is jointly connected to two 
different Fully Connected NN layers of output size one, which provide the inferred target speed 
and pressure values. 

5 RESULTS 
Our model was trained and evaluated on the pre-processed dataset. To identify the best 

configuration for each task, we tuned our hyperparameters using 10-fold cross-validation. Then, 
we evaluated the models, trained using the best hyperparameters, on the test set. The train-
validation-test split of the data was 60% for the train set; 20% for the validation set; and 20% 
for the test set. 

Overall, the results show that the model performs well, providing an average Mean Squared 
Error of 0,0015 for the speed, and 0,0078 for the pressure predictions respectively (the 
validation dataset was not included in the training process to avoid overfitting biases). 

1241



Furthermore, the average loss for the predicted values (on the test dataset) was 0,023 for speed 
and 0,065 for pressure. Table 2 summarizes the loss values for speed and pressure predictions 
for all the validation runs. 

Table 2: Mean loss for speed and pressure of all the validation runs 

Run Speed loss Pressure loss 
1 0,0226 0,0659 
2 0,0238 0,0651 
3 0,0231 0,0642 
4 0,0217 0,0663 
5 0,0234 0,0638 
6 0,0213 0,0654 
7 0,0235 0,0653 
8 0,0229 0,0648 
9 0,0220 0,0650 
10 0,0232 0,0640 

Furthermore, to investigate the correlation between the dataset label features and the 
predicted values, we calculated the Pearson Correlation Coefficients (PCC) for all the validation 
runs. PCC quantifies the strength of the linear relationship between the predicted values in 
adherence with the respective labels. Table 3 summarizes the PCCs of speed and pressure for 
all the validation runs. It can be observed that, despite the different datasets used for the model 
training – test – validation, all the values for both prediction variables were stable, with almost 
zero standard deviation. 

Table 3: Mean loss for speed and pressure of all the validation runs 

Run Speed PCC Pressure PCC 
1 0,969 0,722 
2 0,969 0,728 
3 0,968 0,725 
4 0,969 0,708 
5 0,968 0,729 
6 0,970 0,715 
7 0,970 0,726 
8 0,972 0,723 
9 0,968 0,714 
10 0,971 0,723 

As can be observed from the PCC, the speed predictions are very strongly correlated to the 
corresponding labels, while the pressure predictions present lower coherency. However, it is 
worth mentioning that both results yield strong associations [19].  

Figure 4 presents two scatter plots of the predicted values versus the dataset’s true values for 
speed (at the left) and pressure (at the right). As can be observed, both prediction variables do 
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QRW�SUHVHQW�KHWHURVFHGDVWLFLW\��DQG�PLPLF�WKH�WUXH�YDOXHV�DGHTXDWHO\.

Figure 4��/HIW��6SHHG�SUHGLFWHG�YDOXHV�YV�WKH�SHUWDLQLQJ�GDWDVHW�IHDWXUHV.�5LJKW��3UHVVXUH�SUHGLFWHG�YDOXHV�YV�
WKH�FRUUHVSRQGLQJ�GDWDVHW�IHDWXUHV.

6 CONCLUSIONS
56V� DUH� LQWHQGHG� WR� VXSSRUW�ZRUNHUV� LQ� RSWLPDO� GHFLVLRQ�PDNLQJ�� HVVHQWLDOO\� DXJPHQWLQJ�

WKHLU�FDSDELOLW\�WR�LGHQWLI\�WKH�RSWLPDO�FKRLFH�RXW�RI�D�QXPEHU�RI�DYDLODEOH�RSWLRQV. /LNHZLVH��
WKH�PDLQ�REMHFWLYH�RI�WKH�LPSOHPHQWHG�56 LV�WR�DVVLVW�WKH�WHVW�ODE�3/2V GXULQJ�WKH�FDOLEUDWLRQ�
SKDVH��DGMXVWLQJ�WKH�EORFN�YDOYH�VR�DV�WR�DFKLHYH�WKH�RSWLPDO YDOXHV�RI�PHDQ�VSHHG��SUHVVXUH��
DQG�QRLVH. 6ROXWLRQV��VXFK�DV�WKH�RQH�GHVFULEHG�LQ�WKLV�ZRUN��UHTXLUH�WDVNV�ZKHUH�WKH�/HYHO�RI�
$XWRPDWLRQ�>21@ LV�VXIILFLHQWO\�ORZ��IRU�KXPDQ�3/2V�WR�EH�DW�WKH�FHQWUH�RI�WKH�RSHUDWLRQ��DQG�
DV�VXFK�� LQ�FKDUJH�RI� WKH�GHFLVLRQ�PDNLQJ�SURFHVV.�7R� WKLV�HQG��ZH�SUHVHQWHG� DQ 56�IRU� WKH�
FRQILJXUDWLRQ�RI�DQ HOHYDWRU�K\GUDXOLF�SUHVV GXULQJ�PDQXIDFWXULQJ��ZKLFK�LV�PDLQO\�D�PDQXDO�
SURFHVV�WKDW SURYLGHV D�XVHU�IRFXVHG�DQG�GDWD�LQIRUPHG�SURRI�RI�FRQFHSW�HQYLURQPHQW�IRU�RXU�
VROXWLRQ.

7KLV�ZRUN�WKXV�UHSRUWV�RQ�DQ 0/ PRGHO�IRU�SUHGLFWLQJ�WKH�VSHHG�DQG�SUHVVXUH�YDOXHV�RI�D�
JLYHQ�GDWDVHW.�7KH�PRGHO�ZDV�WHVWHG�RQ�D�GLIIHUHQW�GDWDVHW�WR�SUHYHQW�RYHUILWWLQJ�ELDVHV� WKHQ�
WUDLQHG�DQG�HYDOXDWHG�RQ�D�SUH�SURFHVVHG�GDWDVHW�XVLQJ�10�IROG�FURVV�YDOLGDWLRQ.�7KH�RXWFRPHV�
GHPRQVWUDWH�WKH�HIIHFWLYHQHVV�RI�RXU�DSSURDFK��ZLWK�DYHUDJH�0HDQ�6TXDUHG�(UURUV�IRU�WKH�VSHHG�
DQG�SUHVVXUH�IRUHFDVWV�RI�0�0015�DQG�0�0078��UHVSHFWLYHO\.�6WURQJ�OLQHDU�FRUUHODWLRQV�EHWZHHQ�
WKH�SURMHFWHG�YDOXHV�DQG� WKHLU� FRUUHVSRQGLQJ� ODEHOV�ZHUH� IXUWKHU�KLJKOLJKWHG�E\� WKH�3HDUVRQ�
&RUUHODWLRQ�&RHIILFLHQW�VWXG\.�

)XWXUH�ZRUN VKRXOG� FRQFHQWUDWH� RQ� HQKDQFLQJ� WKH�PRGHO
V� FDSDELOLW\� WR� IRUHFDVW� SUHVVXUH�
YDOXHV.�$FFRUGLQJ�WR�RXU�ILQGLQJV��FRUUHODWLRQ�EHWZHHQ�WKH�DQWLFLSDWHG SUHVVXUH YDOXHV�DQG�WKHLU�
FRUUHVSRQGLQJ� ODEHOV ZDV� QRW� DV� VWURQJ DV� LQ� WKH� FDVH� RI� VSHHG� SUHGLFWLRQ.� 7R� HQKDQFH� WKH�
PRGHO
V�FDSDELOLW\�IRU�SUHVVXUH�SUHGLFWLRQ��ZH�DGYLVH�ORRNLQJ�DW�DOWHUQDWLYH�PRGHOV�RU�GDWD�SUH�
SURFHVVLQJ�PHWKRGV.�$GGLWLRQDOO\�� DGGLQJ� H[WUD� FKDUDFWHULVWLFV� OLNH� WKH� WLPH� RI� GD\� RU� WKH�
ZHDWKHU� FRXOG�KHOS�WKH�DOJRULWKP�IRUHFDVW�WKH�SUHVVXUH�OHYHOV�PRUH�SUHFLVHO\. ,Q�DGGLWLRQ��LQ�
RUGHU�WR�IXOO\�UHDOL]H�D�V\VWHP�WKDW�FDQ�EH� WUXVWHG�HQRXJK�E\�3/2V�WR�UHGXFH�WKH�QXPEHU�RI�
XQQHFHVVDU\� WHVWV� LQ� UHDO� PDQXIDFWXULQJ� FRQGLWLRQV�� DGGLWLRQDO� ORQJ�WHUP� $,� DFFRXQWDELOLW\�
FRQVLGHUDWLRQV VKRXOG�EH�LQWHJUDWHG�LQWR�WKH�VROXWLRQ¶V�GHVLJQ��VXFK�DV�WKH�XVH�RI�%ORFNFKDLQ IRU�
VWRULQJ�WKH�56�SUHGLFWLRQ�UHVXOWV�LQ�DQ�LPPXWDEOH PDQQHU >22@.
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Whilst our model was validated for the particular use case, we purport it to be a valuable 
tool for different applications, such as traffic management systems and driverless cars, due to 
its high degree of accuracy in speed prediction. Extending the approach for such use cases is 
left as motivation for future work. 
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