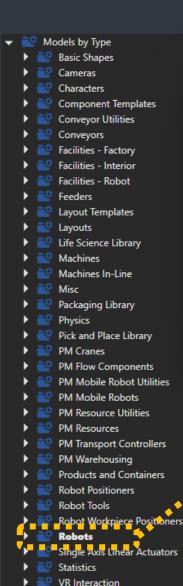
Robotics and automation


Shayan Moradkhani, Fernando Ubis Session 4/6 Notes Optimai 10-03-2022

4.4

PROGRAM TAB

- 1) TEACHING TARGET POINTS
- PTP VS LIN
- 3) MOVE VS JOG
- 4) EDITING TARGET POINTS
- 5) TOOL CENTER POINT AND BASE
- 6) MAPPING SIGNALS TO ROBOT ACTIONS
- 7) GRASPING
- 8) RELEASING
- 9) MULTI GRASPING AND RELEASING
- 10) POINTS REFERENCE
- 11) SIGNALS
- 12) SEQUENCES
- 13) ROUTINE PROPERTIES AND VARIABLES
- 14) STATEMENT PROPERTIES
- 15) SAVING A ROBOT PROGRAM

Works Library
Works Mobile Robots

Works Pathfinding

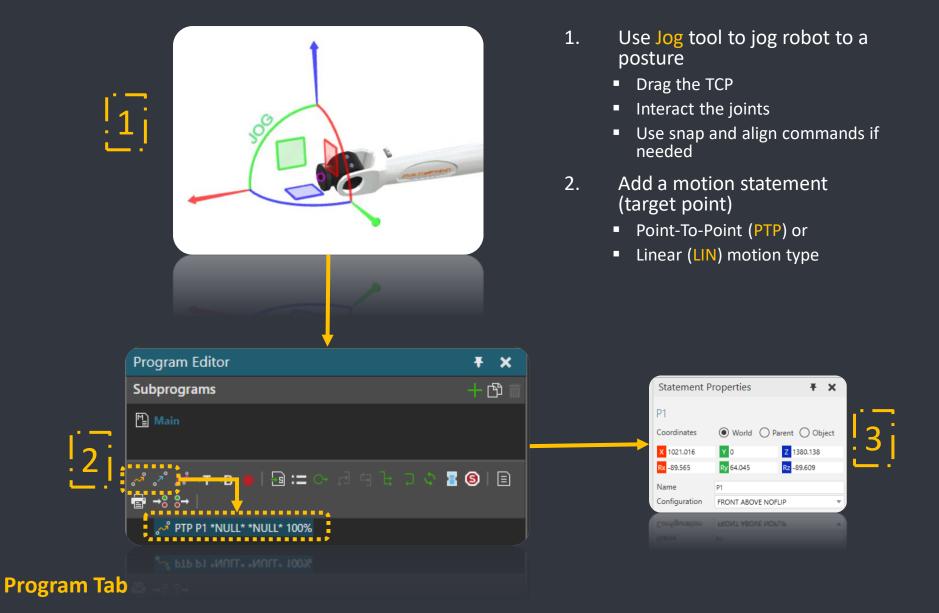
Works Resources

Generic Robot

MODELING

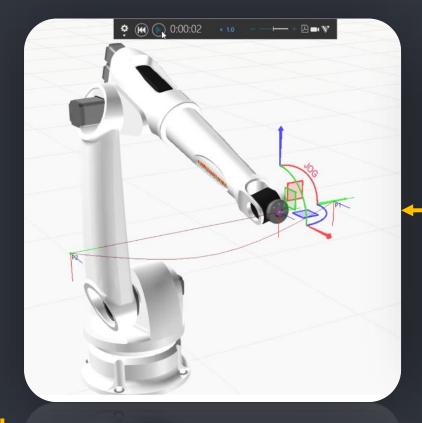
FILE

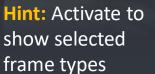
HOME

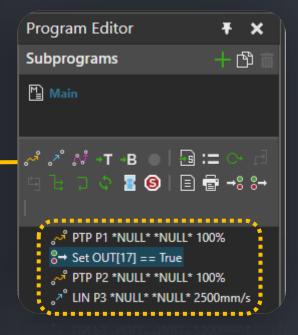

PROCESS

CONNECTIVITY

DRAWING


TEACHING TARGET POINTS



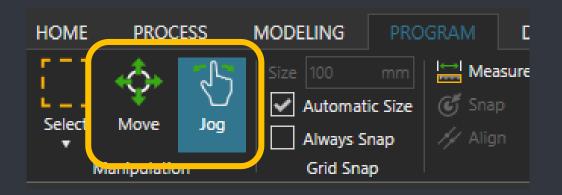

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

PTP VS LIN

PTP

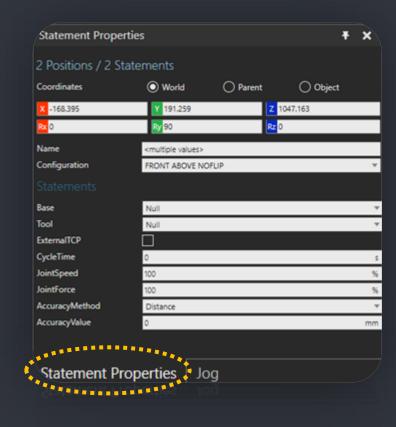
- Joint interpolated motion where all the joints move to the target point values at the same time
- Quick movements
- Possible change of configuration

LIN


- Linear interpolated motion
- Tool Center Point (TCP) follows the straightest path to the target point
- Used in approach movements
 - 1) Teaching Target Points
 - 2) PTP vs LIN
 - 3) MOVE vs JOG
 - 4) Editing Target Points
 - 5) Tool Center Point and BASE

 - 6) Mapping Signals to Robot Actions
 - 7) Grasping
 - 8) Releasing
 - 9) Multi Grasping and Releasing
 - 10) Points Reference
 - 11) Signals
 - 12) Sequences
 - 13) Routine Properties and variables
 - 14) Statement Properties
 - 15) Saving a Robot Program

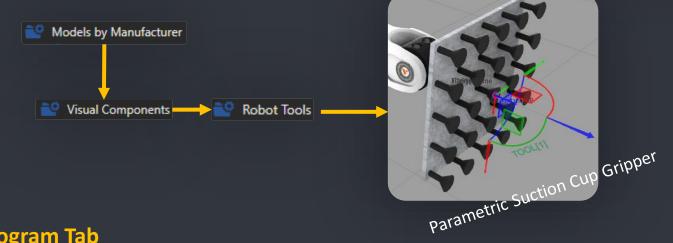
MOVE VS JOG

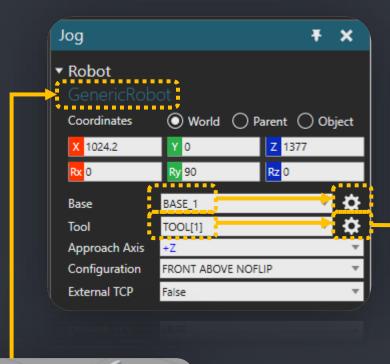


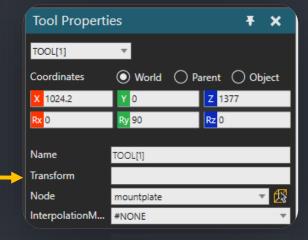
- Manipulate robot and other devices Jog - 3D handle shown at the active TCP - Touch up required to update program points Move - Move selected item(s) - Point, Component, Base, Tool - Moving a program point edits the point immediately

- 1) Teaching Target Points
- 2) PTP vs LIN
- **MOVE vs JOG**
- 4) Editing Target Points
- Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

EDITING TARGET POINTS

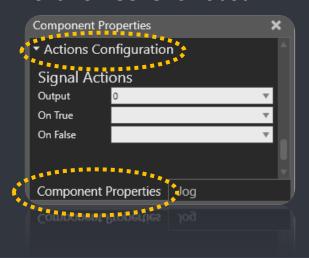

- ➤ Use Move tool to relocate single or multiple points location
- ➤ Select single or multiple points to edit their properties like
 - Base
 - Tool
 - Speed


- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
 - 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program



TOOL CENTER POINT AND BASE

- Use Move tool to define tool location
 - E.g. While dragging an arrow handle of manipulator for a selected object in 3D world, hold down CTRL, and then point to geometry to snap axis to that position
- > Attach to a Node

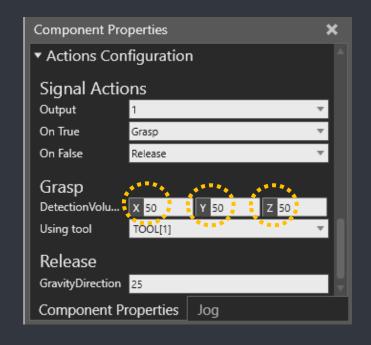


- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

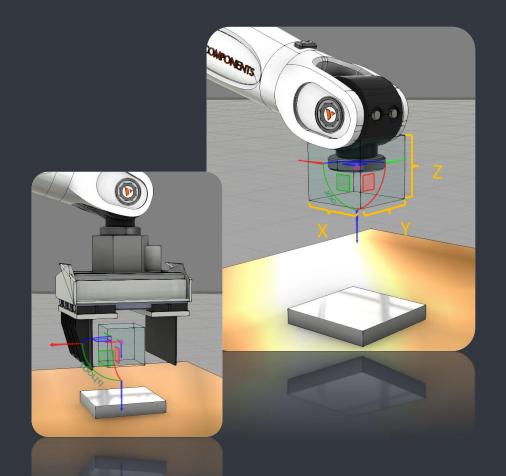
MAPPING SIGNALS TO ROBOT ACTIONS

Click on *Generic Robot*:

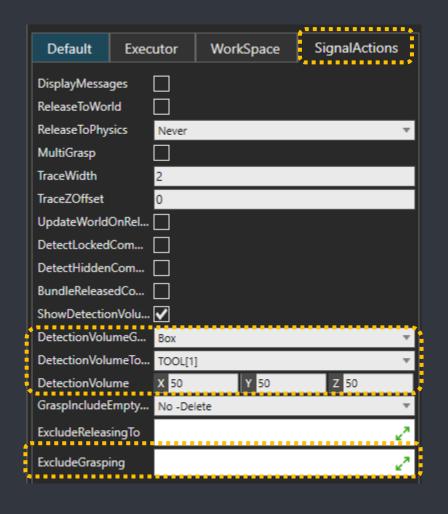
- > Map output signals to actions in Signal Actions configurator
- > Default robot output signal ports
 - Most of the robots components have an Action Script behavior which automatically maps signals 1 to 48 to tool frames and signals 49 to 80 to base frames.


RULE OF THUMB: First <u>100</u> signals are reserved for standard actions

Output #	Action On True	Action On False
116	Grasp	Release
1732	Trace Tool On	Trace Tool Off
3348	Mount Tool	Unmount Tool
4980	Trace External Tool On	Trace External Tool Off
81	Start Swept Volume	Stop Swept Volume

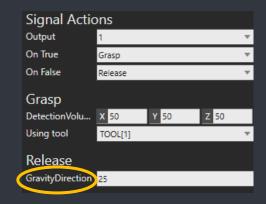

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

GRASPING


- "Imaginary" detection volume is used to detect nodes within the given 3D space for grasping
 - The given volume is symmetric to the used TCP point

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

GRASPING

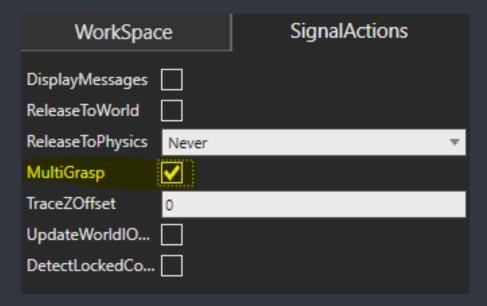

- ➤ Detection volume can be visualized in SignalActions tab
 - No affect for Actions Configurations => Only for visualization!
- ➤ You can list components that robot must not pick in ExludeGrasping

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

RELEASING

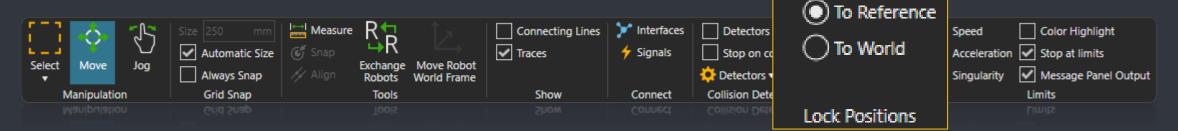
Note: DetectionVolume and GravityDirection can be set for each output (action) individually

- > The grasped component's bounding box is used to detect a node (below) to release to
- Gravity direction is used to translate the component (used for detection) along world's Z axis


The grasped component will be attached to the pallet

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

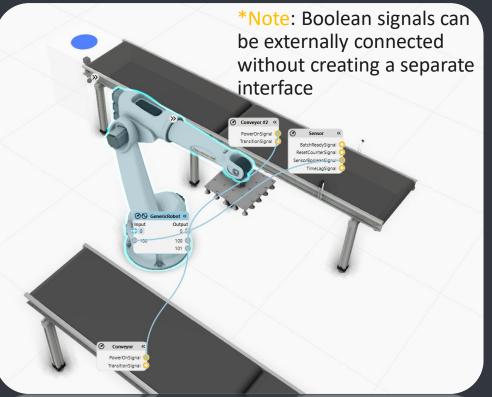
MULTI GRASPING AND RELEASING


- > Enable MultiGrasp from component properties
- DetectionVolume for the selected output is used to grasp every detected component within the volume
- ➤ All contained components are released simultaneously

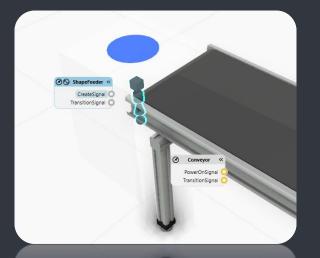
- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs_JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

POINTS REFERENCE

- Taught points can be locked to the world or to the reference (base) coordinate system
- Null base referenced points are based on the robot world frame by default
- Use Case Examples:
 - a. Lock To World: Moving robot while keeping taught points in place
 - b. Lock To World: To keep points in place when rebasing
 - c. Lock To Reference: Move the robot and points along with it
 - d. Lock To Reference: Move robot and keep points in place that are referenced/based to another component e.g. work piece positioner


- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
-) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing

10) Points Reference


- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

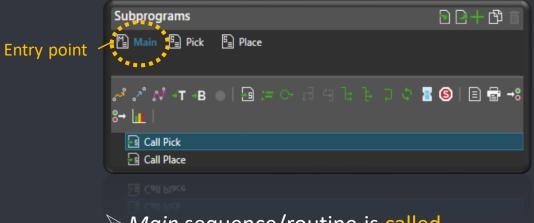
SIGNALS

- a. Internal to component or external via assigned interface*
- b. Signal handling donewithin the component e.g.a connected sensorbehavior or a python script

Several signal types

Мар

Tip: Access boolean signals from Signals button or quick access menu after selecting component (shown only if component has interfaces)


- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference

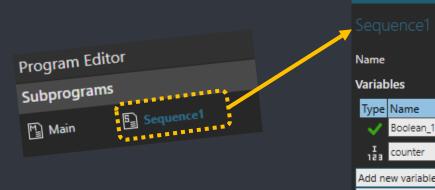
11) Signals

- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program



SEQUENCES

Main sequence/routine is called always on simulation start,


- if Executor is enabled
- ➤ Subroutines can be called from the Main routine

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 3) Tool celler Follitalia BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

ROUTINE PROPERTIES AND VARIABLES

Tassign counter = 0

Assign counter = 0

APP P1 *NULL* *NULL* 100%

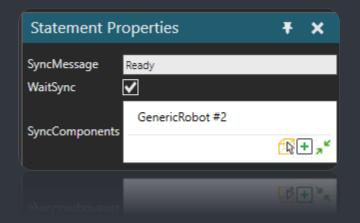
While counter < 2

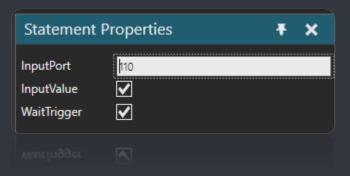
APP P1 *NULL* *NULL* 2500mm/s

ASSIGN counter = counter + 1

APP P4 *NULL* *NULL* 100%

- ➤ Each routine can have variables that can be used within the routine
- Not possible to share variables between routines
- Typical use case is a loop counter


- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program



STATEMENT PROPERTIES

All statements have properties. Most are self-explanatory, just a few tips:

- Sync
 - *WaitForSync* = Wait for reply
- Wait →©
 - Input: WaitTrigger = On rising edge

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables

14) Statement Properties

15) Saving a Robot Program

SAVING A ROBOT PROGRAM

- Programs are saved along with the component
- Components are saved along with the layout
- > Saving a robot with a premade program is accomplished by saving to a reusable separate file via modeling tab with Save As

Hint: For exporting and importing VC robot program check this add-on in the forum: https://forum.visualcomponents.com /forums/topic/save-robot-program/

- 1) Teaching Target Points
- 2) PTP vs LIN
- 3) MOVE vs JOG
- 4) Editing Target Points
- 5) Tool Center Point and BASE
- 6) Mapping Signals to Robot Actions
- 7) Grasping
- 8) Releasing
- 9) Multi Grasping and Releasing
- 10) Points Reference
- 11) Signals
- 12) Sequences
- 13) Routine Properties and variables
- 14) Statement Properties
- 15) Saving a Robot Program

