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Abstract 

The identification of defects plays a key role in the semiconductor industry as it can reduce production risks, minimize the effects 
of unexpected downtimes and optimize the production process. A literature review protocol is implemented and latest advances are 
reported in defect detection considering wafer maps towards quality control. In particular, the most recent works are outlined to 
demonstrate the use of AI-technologies in wafer maps defect detection. The popularity of these technologies is then presented in 
the form of visualizing graphs. This enables the identification of the most popular and most prominent ML-methods that can be 
exploited for the purposes of Industry 4.0. 
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1. Introduction  

Common machine learning (ML) methods are reviewed in [1] for intelligent manufacturing, which triggers an 
extensive discussion on their strengths and weaknesses in a wide range of manufacturing applications. In a recent 
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comparative review study on ML algorithms for smart manufacturing (SM), various well-known ML techniques, 
including Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest (RF), were 
implemented regarding industrial tool wear prediction [2]. Also, ML techniques including neural networks (NNs), 
fuzzy logic, genetic algorithms, and hybrid systems were reviewed for the decision making and monitoring of several 
industrial operations [3]. Concerning their structure, ML models are usually designed with shallow structures; such 
traditional models are ANN, SVM, logistic regression (LR), etc. In the case of ML models with limited handcrafted 
features, a decent performance is achieved in a variety of applications. However, the massive data in SM imposes a 
variety of challenges [4], such as the proliferation of multimodal data, high dimensionality of feature space, and 
multicollinearity among data measurements. These challenges seriously affect ML algorithms, greatly impeding their 
performance. 

Deep Learning (DL) is an extension of ML and describes the ability of smart systems to imitate human brain 
functionality in tasks such as decision making and data processing. DL techniques enable people to (1) automatically 
learn from data, (2) detect underlying patterns, and eventually (3) make efficient decisions. Encapsulating automatic 
feature learning and high-volume modelling capabilities, DL provides an advanced analytics tool for SM in the big 
data era. It uses a cascade of layers of nonlinear processing to learn the representations of data corresponding to 
different levels of abstraction. The hidden patterns underneath are then identified and predicted through an end-to-end 
optimization. Thus, DL offers great potential to enhance data-driven manufacturing applications [5]. There are several 
review papers extracted from the related literature, which show the actual implementations of ML and DL methods in 
factory operations within the SM domain.  

The authors in [6] performed a review study focused on the applications and challenges of ML techniques in SM. 
This study provides an overview regarding several ML algorithms (e.g. SVM, k-nearest neighbor, NN etc.) which 
bring notable improvements inside different manufacturing areas, such as optimization, quality control, prediction of 
failure, cost reduction and transparency. Future trends concerning the applications of ML in SM are also discussed. 

Additionally, a systematic review on the application of ML for manufacturing processes was presented in [7]. This 
study focused on the efficient application of various DL models including Convolutional Neural Networks (CNNs) 
and other Deep NN architectures, in certain smart industry processes, such as image recognition and object detection, 
thereby enhancing industrial solutions. 

In another study [8], a systematic literature review was conducted concerning the application of DL techniques to 
wafer maps defect detection. Typical DL models such as Recurrent NNs, Generative Adversarial Networks (GANs) 
and Deep CNNs play a key role in the automatic learning from data, thus, producing different levels of pattern 
recognition, mainly used for fault assessment and defect detection in semiconductor industry. 

This review is conducted within the framework of the “OPTIMAI” project, oriented in defect detection in 
semiconductor industry considering wafer maps towards quality control. It is part of an extended literature survey on 
Artificial Intelligence (AI) and DL methods for defect pattern recognition, applied in certain OPTIMAI use cases in 
semiconductor wafers. The review was performed to investigate all the implemented methodologies so far in the 
domain of anomaly detection and fault recognition so as to help with the identification of root causes in the 
manufacturing process and the overall support of production optimization. The performed survey is referred to years 
from 2017 up to date. 

2. Introduction  

The present short review is based on the preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) principles [9], as this process is suitable for well-structured articles research. According to this method, 
the survey was carried out using a predefined question which leads to the identification of the studies included in the 
survey. These studies are collected, analyzed and critically assessed. 

2.1. Literature Search 

In this review study, Scopus was the extracted database for the conducted literature search. Scopus is the only 
database exploited for the purposes of the current research for certain reasons. First, the presented research work 
constitutes a short review study which should comply with paper size limitations. This prevents investigating 
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extensively and in-depth the domain of defect-pattern recognition in wafer maps exploiting ML-based methods. An 
extended version is being prepared as an extension of this work. Secondly, Scopus is a well-known database, 
accessible by most scientists, which provides freely interdisciplinary scientific data and literature across all research 
areas. Its board members include an international group of scientists, researchers and librarians of all major scientific 
disciplines who can ensure the high quality and authenticity of the published articles. Thus, present work can be 
accredited with meeting all the scientific requirements and complying with ethical principles such as the accuracy of 
scientific knowledge.  

Predetermined eligibility criteria were applied on the search for articles and were based on the articles’ title, abstract 
and keywords. Further investigation of the full texts was accomplished to verify that the articles initially located are 
in line with the inclusion criteria. The literature search strategy was conducted by utilizing the keywords including 
“wafer maps”, “pattern recognition”, “pattern classification”, “deep learning” and “Machine learning”, using the query 
string in Fig. 1; this query string was oriented in locating adequate numbers of relevant studies for inclusion to conduct 
a well-built research work with credible results. 

 
Fig. 1. Query string employed in literature search. 

2.2. Eligibility Criteria 

The studies that are part of the short review meet the eligibility criteria incorporated, which include the reference 
of the author, the year of publication, the type of the article, the methodology applied that refers to AI, DL or ML, as 
well the scope and the industrial process in the manufacturing domain. The inclusion criteria include: (i) papers 
published between the 1st of January 2017 and the 15th of May 2022 (date of literature search)); (ii) the process of 
defect detection in wafer maps; (iii) AI-based algorithms, including both traditional ML and DL techniques 
incorporated for defect pattern recognition; (iv) ML-based methods in wafer maps defect detection. 

The exclusion criteria were as follows: (i) articles published before 2017; (ii) articles not related to AI/ML; (iii) 
Websites and online material, student theses, book chapters, editorials, commentaries and non-original research 
articles, such as protocols, meta-analysis, etc.; (vi) journal or conference reviews; (v) articles not written in English.  

2.3. AI Methods 

In SM, AI has found significant applicability for processing and analysing big manufacturing data. The most 
popular DL methods are the DNNs, CNNs, Res-Nets, GANs, auto-encoders, mainly used for defect pattern recognition 
in semiconductor industry as regards wafer maps. 

3. Results 

After a thorough review of all mined articles, only those applying AI, ML, or DL methodologies for defect pattern 
recognition on wafer maps were retained. After the adoption of the PRISMA method and only those articles that were 
explicit to the subject of this short review were retrieved. The overall search process is graphically illustrated in Fig. 
2.  
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Fig. 2. Research process screening. 

Finally, 29 research papers were selected for further analysis. The selected articles are listed in Table I accompanied 
by the year of publication, the method deployed, the scope of the study and the wafer map dataset in which the 
methodology was applied. 

In this study, we focused on three main AI methods that were involved for wafer map defect pattern recognition, 
namely ML, DL and hybrid methods of these two. To this end, we categorized the literature results based on the 
aforementioned types of methods. The results can be further categorized by the datasets exploited for model’s 
evaluation. Specifically, experimental evaluation was performed either on public datasets or on real wafer maps that 
haven’t been publicly distributed.  

Concerning public datasets, WM-811K and MixedWM38 were found in literature. WM-811K [10] was collected 
from 46,293 lots and consists of 811,457 real industrial wafer maps; approximately 20% of the wafer maps were 
annotated about their defect types by experts in the field where they defined 9 defect patterns. To alleviate single 
defect patterns, MixedWM38 [11] was introduced. This dataset consists of nine patterns of WM-811K and 29 
combinations of them. To handle data imbalance, the producers of the dataset created synthetic images for class with 
minority samples. Thus, 38,000 samples of this dataset are based on both real and synthetic wafer maps. On the other 
hand, several works run experiments on different datasets than the previous mentioned, to examine customized 
solutions based on real and private datasets from semiconductor industries.  

3.1. ML Methods 

Starting with the ML approaches in the field of wafer map pattern recognition, a voting ensemble classifier with 
multi-type features to identify wafer map defect patterns is proposed in [12]. Four state-of-the-art ML base classifiers 
such as LR, RF, gradient boosting machine (GBM), and ANN were trained with the same set of features such as 
density and geometry, extracted from raw wafer images of WM-811K. An ensemble approach was proposed, 
collecting the best results of all classifiers and aggregating them to get the final classification result for all defect 
classes.  

Using a clustering approach and specifically the density-based spatial clustering of applications with noise 
(DBSCAN) [13], the authors of [14] detected and classified the defected patterns of WM-811K. In their methodology, 
Cartesian and polar coordinates of defective and edge dies were extracted and used for DBSCAN clustering. 
Subsequently, to detect patterns, outliers were treated differently for each pattern, depending on whether they should 
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be removed or not. For classification, each wafer map was iteratively checked for each defect class. The classification 
results for only one type of pattern provided 100% recall and 85% precision. 

For the same dataset and task as the previous approach, an enhanced stacked denoising autoencoder (ESDAE) with 
manifold regularization was proposed in [15]. Wafer maps were denoised with median-filtering and four types of 
features (geometrical, gray, texture and projections) were extracted from each wafer map to be used as input in 
ESDAE. ESDAE consists of two autoencoders both having a single hidden layer. To handle imbalance, a cost sensitive 
learning method was developed to assign different costs to misclassifications of minority classes. The proposed system 
can recognize defect patterns with a 91.9% rate.  

For a simulated dataset on analogue wafer test data and the task of defect pattern recognition, a comparison of three 
different ensemble approaches was examined in [16]. Specifically, the authors compared RF with ensemble RF-based 
approaches, namely: bagging, voting, and adaboost. All models achieved almost similar classification performance, 
with a slight increase in accuracy for adaboost and bagging. 

Ensemble models were also used in the work of [17], which examined the recognition of the grid type defect pattern 
on a dataset of real wafer maps. In the proposed five-phase methodology, the first four steps were focused on 
enhancing the wafer maps to reveal grid patterns, while the last phase aimed to recognize the defect patterns with ML 
techniques. The ensemble models that were examined are adaboost with decision trees, RF, gradient boost, XGboost, 
extremely randomized trees, and bagging with decision tree. The features used in this method were density, radon, 
geometry and line. The highest classification accuracy (96.45%) was produced by the extremely randomized trees.  

Another ML method was proposed in [18] which is based on semi-supervised learning, in which labeled data prone 
to misclassifications were excluded from the training. The first two phases of the proposed framework are dedicated 
to preprocessing (data cleansing, DBSCAN denoising) and feature extraction (geometric, statistics, radon). Phase 
three is about constructing the classifier, phases four and five are about clustering similar unlabeled data, while phase 
five involves enhanced labeling with experts. The bagging algorithm with 1000 decision trees was used as a classifier, 
while self-organized map was used for unsupervised learning in phase five. Experimental results in a modified WM-
811K dataset with 5 new defect types produced an overall accuracy of 94.37%.  

Subsequently, a few-shot learning method was also examined in the work of [19], based on a hybrid self-attention 
and prototype network. Prototypical networks differ from traditional DL methods as they adopt the meta-learning 
training paradigm to handle data scarcity learning. The proposed few-shot network for classifying defect patterns in 
both WM-811K and MixedWM38 datasets, involves three steps: feature embedding, feature representation and 
distance measurement. This method managed to produce high classification performance for most of the patterns even 
with a small amount of data.  

To recognize defect patterns in WM-811K, a self-organizing incremental neural network (SOINN) was proposed 
in [20]. Radon features from wafer maps were used within the SOINN and were based on the input and the abilities 
of SOINN. The model determines if additional neurons are required and can identify new patterns that were not seen 
in the training phase. The proposed approach is useful for applications with dynamic changes.  

Using a custom dataset of real wafer maps, the authors of [21] proposed a defect pattern recognition method with 
adaboost for scratch patterns. Out of the five-step methodology, the first four steps were dedicated in enhancing the 
patterns in wafer maps, by examining clustering and preprocessing techniques. In the final step, classification was 
performed with adaboost based on 500 decision trees and 0.7 learning rate. Feature extraction was performed for 
density, radon, geometry and line features. The results achieved over 89% recognition rate in scratch pattern and over 
94% in common defect patterns. 

3.2. DL Methods 

The application of ML-based algorithms has the downside of the manual feature extraction process. Thus, DL 
methods emerged, that were focused on unsupervised feature extraction with CNNs. The authors in [22] proposed a 
CNN classifier for wafer map defect pattern recognition and image retrieval tasks. Their CNN classifier consists of 
three pairs of convolutional-pooling layers and two fully connected layers. The model was trained with simulated 
wafer maps and was tested in real wafer maps. It was proved that using only synthetic data for training the model can 
provide high classification accuracy with real wafer maps. Image retrieval was applied using the features from the 
first fully connected layer and the Hamming distance measure, giving 3.7% error rate.  
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To recognize defect patterns in WM-811K, a self-organizing incremental neural network (SOINN) was proposed 
in [20]. Radon features from wafer maps were used within the SOINN and were based on the input and the abilities 
of SOINN. The model determines if additional neurons are required and can identify new patterns that were not seen 
in the training phase. The proposed approach is useful for applications with dynamic changes.  

Using a custom dataset of real wafer maps, the authors of [21] proposed a defect pattern recognition method with 
adaboost for scratch patterns. Out of the five-step methodology, the first four steps were dedicated in enhancing the 
patterns in wafer maps, by examining clustering and preprocessing techniques. In the final step, classification was 
performed with adaboost based on 500 decision trees and 0.7 learning rate. Feature extraction was performed for 
density, radon, geometry and line features. The results achieved over 89% recognition rate in scratch pattern and over 
94% in common defect patterns. 

3.2. DL Methods 

The application of ML-based algorithms has the downside of the manual feature extraction process. Thus, DL 
methods emerged, that were focused on unsupervised feature extraction with CNNs. The authors in [22] proposed a 
CNN classifier for wafer map defect pattern recognition and image retrieval tasks. Their CNN classifier consists of 
three pairs of convolutional-pooling layers and two fully connected layers. The model was trained with simulated 
wafer maps and was tested in real wafer maps. It was proved that using only synthetic data for training the model can 
provide high classification accuracy with real wafer maps. Image retrieval was applied using the features from the 
first fully connected layer and the Hamming distance measure, giving 3.7% error rate.  
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In [23], the authors proposed a framework for wafer map pattern recognition based on CNN, and particularly VGG 
[24]. To increase the classification performance, they developed a rule-based denoising method for wafer-maps 
using the Hough transform. The accuracy and the macro F1-score presented in the WM-811K, are 94.7% and 
73.67%, respectively. 

Using a different approach, the authors in [25] presented a method for detecting and segmenting wafer map defect 
patterns with CNN autoencoders. They examined CNN autoencoder architectures based on the SegNet [26], the U-
Net [27] and a fully convolutional network. Synthetic data were used to train the autoencoders, while the real data 
were used to evaluate the detecting and segmenting performances. The intersection over union formula was used as a 
metric for object detection performance. They demonstrated that their approach of using only synthetic data during 
training, is effective for detection of unseen defect patterns from real wafer maps. 

An approach with GAN was presented in [28] to improve the classification performance in WM-811K. The authors 
proposed an adaptive balancing GAN (AdaBalGAN) with imbalanced learning. The framework consists of two parts: 
a categorical GAN for data generation and an adaptive generative controller for evaluating classification performance 
with respect to imbalanced learning ability and the sample size. The method achieved 96% classification accuracy.  

Another CNN classification approach for the same task was proposed in [29]. The authors targeted on a small 
amount of wafer maps. Moreover, they analyzed popular CNN architectures such as VGG [24], ResNet [30] and 
MobileNet [31] to evaluate their classification performances. They used a composite small training dataset of both 
synthetic and real data. Real wafer maps were derived from WM-811K. The classification accuracy in the remaining 
data of WM-811K for this approach was 87.8%. 

In a different method, the authors in [32] focused on a methodology that decreases the labelling needs for CNNs 
with the use of active learning. The proposed framework consists of four main phases that were constantly repeated 
in order to increase the classification performance. These phases involve: uncertainty estimation of the first results on 
an initial labeled dataset, query wafer selection based on the previous estimation, query wafer labeling by experts, and 
model update. Using a LeNet-5 [33] CNN architecture, they carried out experimental comparisons between various 
uncertainty estimation methods on the WM-811K dataset, to evaluate the classification performance of the proposed 
system.  

Contrary to the previous approach, CNN with selective learning was presented in [34] as well as data augmentation 
with autoencoders. The CNN classifier consists of three pairs of convolutional and pooling layers and one fully 
connected layer. The output of the model has two heads: one for a prediction and one for a selection function. Selection 
function is a binary reject option that indicates the risk of misclassification. With this option, the model is allowed to 
abstain from prediction when there is an unpredictable sample. The accuracies achieved with and without the reject 
option in WM-811K were 99% and 94% respectively. 

In the next work [35], a totally different dataset for defect pattern recognition was assessed. Specifically, real wafer 
images were used as wafer maps in order to recognize 11 common defect patterns. The images were transformed with 
Radon transform while both transformations and original data were combined in a CNN classifier to improve 
recognition accuracy. The proposed model (RadonNet) is a combination of VGG16 [24], Inception [36] and ResNet 
[30]. Using data augmentation techniques based on basic image manipulations, the authors achieved 98.5% accuracy. 

Subsequently, the authors of [11] introduced a dataset for mixed type defect patterns naming it as MixedWM38. 
There are 38 defect patterns in this dataset, based on both real and simulated wafer maps. Moreover, they proposed a 
deformable CNN of five blocks to classify the mixed defect patterns. The first block uses convolutional and batch 
normalization layers. In the next three blocks, deformable convolutions were added, while the last block consisted of 
two fully connected layers. The model recognized the mixed-type defect patterns with 93.2% average accuracy.  

The authors in [37] proposed a DL-based CNN for automatic wafer defect identification (CNN-WDI). A 2D CNN 
model was constructed for WDI with one input layer, eight convolutional layers (CL) comprising batch normalization 
(BN) [38], padding and Rectified Linear Unit (ReLU) activation [39], five pool layers (PL) [33] (four stacking pairs 
of Conv-Pool-Conv), one dropout layer, two fully connect (FC) layers, and one output layer. Experimental results 
showed that the CNN-WDI model outperforms previously proposed models such as WMFPR, DTE-WMFPR, and 
WMDPI, using the same dataset, in terms of classification accuracy (96.2%). 

The abilities of transfer learning for wafer map defect recognition were examined in [40]. The authors proposed a 
method, where the 29-layer DCNN model was trained with the MNIST [33] dataset and fine-tuned with data from 
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WM-811K. Transfer learning aims to minimize the needs for large datasets. Thus, the authors performed fine-tuning 
on their model with small training datasets derived from the semiconductor benchmark dataset. The provided accuracy 
in a small and balanced dataset of seven defect patterns was above 94.9%.  

In the next work [41] defect detection for mixed-type defect patterns with an enhanced Mask R-CNN [42] was 
performed. The authors used the ResNet architecture as the backbone feature extraction network and further improved 
the Mask R-CNN with the use of the feature pyramid network and the soft-NMS algorithm. The experimental results 
in the MixedWM38 showed that their improved model had higher detection precision of wafer maps compared to the 
Mask R-CNN. In addition, soft-NMS provided higher detection precision in testing than the non-maximum 
suppression algorithm. 

Another CNN classifier for WM-811K was proposed in [43]. This approach differs from other CNN 
implementations as it uses few-shot learning to alleviate imbalance learning by sampling evenly the different classes 
in a training batch. Furthermore, self-supervised learning technique was examined to exploit the unlabeled data that 
exist in the dataset. Thus, the proposed classification framework incorporates few-shot loss and self-supervised loss 
for labeled and unlabeled data, respectively. Inception blocks [36] were also adopted for the CNN architecture. The 
experimental results were further compared to ML approaches demonstrating higher classification performance. 

In [44], popular CNN classifiers and out-of-distribution learning were examined for wafer map pattern 
identification, in a custom dataset of real wafer maps. Four popular CNN architectures namely VGG16, ResNet, 
MobilenetV2 [45] and shufflenet [46] were explored. For out-of-distribution detection, a threshold in the softmax 
output was utilized to determine that these are undefined data. All models showed high detection accuracy for out-of-
distribution data with ResNet achieving the highest classification performance.  

A CNN and a variational autoencoder for solving the data imbalance of WM-811K with data augmentation, were 
proposed in [47]. In this approach, the variational autoencoder generates similar wafer maps, while a deep CNN with 
convolutional, pooling, and batch normalization layers and leaky ReLU activation function, performs classification. 
The proposed method showed very high accuracy (99.19%). 

3.3. Hybrid methods 

CNNs “black box” work principle of unsupervised feature extraction has the risk that the most representative 
features may not be extracted during training. Thus, several works examined both DL and ML methods and 
combinations of them to increase the recognition accuracy. In [48] they examined classifiers based on a CNN, a SVM, 
an adaptive boosting (Adaboost) and an extreme gradient boosting (XGboost). For the non-CNN models, feature 
extraction with singular value decomposition was performed. In addition, GridSearchCV approach was used to find 
the optimization parameters for these ML algorithms. To tackle overfitting, data augmentation techniques with 
geometric transformations were used. CNN achieved the highest accuracy of 99.2% in a real wafer map dataset of 
TSMC 300mm fab.  

The authors in [49] proposed a hybrid method with stacked convolutional sparse denoising autoencoder 
(SCSDAE), for the defect pattern identification task in WM-811K. Stacked sparse autoencoders were used for feature 
learning on a stochastically corrupted input. The SCSDAE architecture consists of two CSDAEs with convolution and 
pooling layers and one final classification layer with an SVM classifier. Dropout layer with 0.9 probability was used 
for regularization. The recognition accuracy this method achieved was 94.75%.  

A combination of CNN, error correcting output codes (ECOC) and SVM for wafer map defect pattern recognition 
was presented in [50]. The extracted features of the CNN were used to train the ECOC model and consist of SVM 
binary classifiers. Experiments were conducted in WM-811K, and their approach showed accuracy of 98.43% 

A hybrid method that combines principal component analysis and convolutional autoencoder (PCACAE) for the 
semiconductor benchmark dataset was proposed in [51]. The PCACAE was trained layer-wise and has two 
convolutional modules with convolutional pooling and batch normalization layers, and an output module with two 
fully connected layers. Feature extraction was further performed with a conditional two-dimensional principal 
component analysis (C2DPCA) and then features were cascaded with the autoencoder. This method achieved 97.27% 
accuracy and outperformed popular CNN classifiers.  

Lastly, a hybrid method is proposed in [52] for the automation of wafer map pattern classification in semiconductor 
manufacturing. This method describes a stacking ensemble that combines base classifiers and a meta-classifier. Base 
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in a training batch. Furthermore, self-supervised learning technique was examined to exploit the unlabeled data that 
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proposed in [47]. In this approach, the variational autoencoder generates similar wafer maps, while a deep CNN with 
convolutional, pooling, and batch normalization layers and leaky ReLU activation function, performs classification. 
The proposed method showed very high accuracy (99.19%). 

3.3. Hybrid methods 

CNNs “black box” work principle of unsupervised feature extraction has the risk that the most representative 
features may not be extracted during training. Thus, several works examined both DL and ML methods and 
combinations of them to increase the recognition accuracy. In [48] they examined classifiers based on a CNN, a SVM, 
an adaptive boosting (Adaboost) and an extreme gradient boosting (XGboost). For the non-CNN models, feature 
extraction with singular value decomposition was performed. In addition, GridSearchCV approach was used to find 
the optimization parameters for these ML algorithms. To tackle overfitting, data augmentation techniques with 
geometric transformations were used. CNN achieved the highest accuracy of 99.2% in a real wafer map dataset of 
TSMC 300mm fab.  

The authors in [49] proposed a hybrid method with stacked convolutional sparse denoising autoencoder 
(SCSDAE), for the defect pattern identification task in WM-811K. Stacked sparse autoencoders were used for feature 
learning on a stochastically corrupted input. The SCSDAE architecture consists of two CSDAEs with convolution and 
pooling layers and one final classification layer with an SVM classifier. Dropout layer with 0.9 probability was used 
for regularization. The recognition accuracy this method achieved was 94.75%.  

A combination of CNN, error correcting output codes (ECOC) and SVM for wafer map defect pattern recognition 
was presented in [50]. The extracted features of the CNN were used to train the ECOC model and consist of SVM 
binary classifiers. Experiments were conducted in WM-811K, and their approach showed accuracy of 98.43% 

A hybrid method that combines principal component analysis and convolutional autoencoder (PCACAE) for the 
semiconductor benchmark dataset was proposed in [51]. The PCACAE was trained layer-wise and has two 
convolutional modules with convolutional pooling and batch normalization layers, and an output module with two 
fully connected layers. Feature extraction was further performed with a conditional two-dimensional principal 
component analysis (C2DPCA) and then features were cascaded with the autoencoder. This method achieved 97.27% 
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Lastly, a hybrid method is proposed in [52] for the automation of wafer map pattern classification in semiconductor 
manufacturing. This method describes a stacking ensemble that combines base classifiers and a meta-classifier. Base 
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classifiers are built based on the manual feature extraction (MFE), which transforms a wafer map into a fixed-length 
vector of handcrafted features and then builds an off-the-shelf classifier, and CNN approaches. The meta-classifier is 
trained to combine the different strengths of the heterogeneous base classifiers [53]. The proposed method yielded an 
improved classification performance compared to the base classifiers and other baseline methods, outperforming the 
best model between the MFE+FNN and the CNN for most defect classes, with respect to F1 scores. The model can 
recognize the wafer map failure types while it automatically extracts its features. 

Table 1. Results of Literature Search sored by Year. 

No Author Year AI/DL Method Scope Dataset 

1 
(Nakazawa and 
Kulkarni 2018) 
[22] 

2018 CNN 
WM defect pattern 
recognition and image 
retrieval 

Simulated, real WM 

2 
(Saqlain, 
Jargalsaikhan & 
Lee., 2019) [12] 

2019 
Voting ensemble classifier 
consisting of LR, RF, GBM and 
ANN 

WM defect pattern 
recognition WM-811K 

3 (Ishida et al. 2019) 
[23] 2019 CNN based on VGGnet WM defect pattern 

recognition WM-811K 

4 
(Nakazawa and 
Kulkarni 2019) 
[25] 

2019 CNN autoencoders WM defect detection and 
segmentation Synthetic, real WM 

5 (Yuan-Fu 2019) 
[48] 2019 CNN, SVM, adaboost and XGboost WM defect pattern 

recognition TSMC 300mm fab 

6 (Yu, Zheng, and 
Liu 2019) [49] 2019 Stacked convolutional sparse 

denoising autoencoder with SVM 
WM defect pattern 
recognition Simulated, WM-811K 

7 (Jin et al. 2019) 
[14] 2019 DBSCAN WM defect pattern 

recognition and detection WM-811K 

8 (Wang et al. 2019) 
[28] 2019 GAN WM defect pattern 

recognition WM-811K 

9 (Yu 2019) [15] 2019 
Enhanced stacked denoising 
autoencoder with manifold 
regularization 

WM defect pattern 
recognition WM-811K 

10 (Maksim et al. 
2019) [29] 2019 CNN WM defect pattern 

recognition Synthetic, WM-811K 

11 (Shim, Kang, and 
Cho 2020) [32] 2020 CNN with active learning Cost-effective WM defect 

pattern recognition WM-811K 

12 (Alawieh, Boning, 
and Pan 2020) [34] 2020 CNN with selective learning WM defect pattern 

recognition WM-811K 

13 (Yuan-Fu and Min 
2020) [35] 2020 CNN WM defect pattern 

recognition Images from real wafers 

14 (Wang et al. 2020) 
[11] 2020 Deformable CNN WM defect pattern 

recognition MixedWM38 

15 (Jin et al. 2020) 
[50] 2020 CNN with error-correcting output 

codes and SVM 
WM defect pattern 
recognition WM-811K 

16 (Saqlain, Abbas & 
Lee, 2020) [37] 2020 CNN WM defect pattern 

recognition WM-811K 

17 
(Abdullah, 
Rahman, and 
Akhter 2021) [16] 

2021 Ensemble approach with 
bagging, boosting, voting, adaboost 

WM defect pattern 
recognition Simulated  
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No Author Year AI/DL Method Scope Dataset 

18 (Liao et al. 2021) 
[17] 2021 

Adaboost with decision tree, 
random forest, gradient boost, 
XGboost, extremely randomized 
trees, and bagging with decision 
tree 

WM grid defect pattern 
recognition Real wafer maps 

19 (Chen et al. 2021) 
[18] 2021 Bootstrap aggregating and Self-

Organizing Maps 

WM defect pattern 
recognition and enhanced 
labeling 

WM-811K 

20 (Chen et al. 2021) 
[40] 2021 CNN based on transfer learning 

WM defect pattern 
recognition WM-811K 

21 (Li and Wang 
2021) [41] 2021 Improved Mask R-CNN WM defect pattern detection MixedWM38 

22 (Geng et al. 2021) 
[43] 2021 CNN with few-shot and self-

supervised learning 
WM defect pattern 
recognition WM-811K 

23 (Yu et al. 2021) 
[19] 2021 Prototypical network 

WM defect pattern 
recognition WM-811K, MixedWM38 

24 (Yu et al. 2021) 
[20] 2021 Self-organizing incremental neural 

network 
WM defect pattern 
recognition WM-811K 

25 (Li et al. 2021) [21] 2021 Adaboost 
WM defect pattern 
recognition Real wafer maps 

26 (Kim, Cho, and 
Lee 2021) [44] 2021 CNNs 

WM defect pattern 
recognition Real wafer maps 

27 (Yu and Liu 2021) 
[51] 2021 PCACAE 

WM defect pattern 
recognition WM-811K 

28 (Wang et al. 2021) 
[47] 2021 CNN 

WM defect pattern 
recognition WM-811K 

29 (Kang & Kang, 
2021) [52] 2021 Stacking ensemble, based on MFE 

and CNN. 
WM defect pattern 
recognition WM-811K 

4. Discussion 

After a thorough literature analysis regarding the utilization of various AI-technologies reported in the 
beforementioned reviewed state of the art, the distribution of the three groups of employed AI-technologies for defect 
pattern recognition in wafer maps is depicted in Fig. 3. 

 

Fig. 3. Preference of the three AI-based methodologies. 

More specifically, Fig. 3 initially provides a general visual distribution of the AI methods that researchers focused 
on, for the task of identifying defect patterns in wafer maps. DL approaches are the most popular choices (52%) as 
they succeeded in increasing both the preprocessing efficiency and the classification accuracy. ML methods are also 
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widely used with 31% presence in the results. The complexity of combining different models, features and 
hyperparameters held back most of the researchers and thus only 17% of the works focused on hybrid models [54,55].  

Most of the methods examined herein, performed on the WM-811K (55%) public dataset as shown in Fig. 4. The 
WM-811K dataset is the world's largest known dataset of wafer maps, available to the public, including 811,457 wafer 
maps collected from 46,393 lots in real-world fabrication. Thus, it has been extensively used by researchers for pattern 
recognition tasks, and more specifically to train and test their models. Therefore, the numerical predominance of the 
WM-811K dataset against all the rest datasets utilized for the purposes of this work is fully accepted and justified. 
The other public MixedWM38 dataset hasn’t received much attention in literature, as it provides 7% presence as 
standalone and 3% along with the WM-811K. Moreover, a considerable amount of works (35%) focused on 
customized datasets of wafer maps that kept private from the research community.  

 

Fig. 4. Usage of datasets in literature. 

The distribution of publications according to the year that have been published is shown in Fig. 5. It is observed 
that there was a downtrend in the research for this topic in the year 2020. This led to research gaps, that scientists 
focused on in the next year. No publications for the current year (2022) that match the eligibility criteria have been 
found in Scopus. 

 

Fig. 5. Publications per year. 

The findings of this research study showed that CNNs are the most popular architecture, followed by ANNs and 
other ensemble methods utilizing Adaboost, all having a significant contribution in Industry 4.0. The exploitation of 
these AI-based technologies towards defect-pattern recognition in the wafer maps domain spark certain challenges 
such as explainability, quality of training, interoperability, privacy and security. These challenges hold a significant 
part in the exploitation of these models and can be considered future trends in this realm, which need to be further and 
exclusively investigated and dealt with in future extensions of this work. 

5. Conclusion 

This paper reviews the current state of the art and the existing results reported in research articles regarding AI-
based defect recognition methods in wafer maps of the semiconductor manufacturing domain. It is obvious that many 
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AI technologies have already been successfully incorporated within the framework for defect pattern recognition in 
wafer maps. ML and especially DL have taken tremendous steps towards performance while they enhance the state 
of the art in this quality inspection topic for smart manufacturing. 
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AI technologies have already been successfully incorporated within the framework for defect pattern recognition in 
wafer maps. ML and especially DL have taken tremendous steps towards performance while they enhance the state 
of the art in this quality inspection topic for smart manufacturing. 
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